
BOOLEAN AND NON-BOOLEAN 'AND'

M A N F R E D K R I F K A

S N S , U n i v e r s i t y of T u b i n g e n
B i e s i n g e r s t r . 10, 7400 T u b i n g e n

FRG

1. INTRODUCTION

The subject of this article is the semantics of the coordination a n d in English arid
its equivalents in other natural languages.* In particular, I will be concemc~d CX:

the one hand with the so-called Boolean conjunction, which is a sentence op:;ratnr
that shares essential properties with conjunction in propositional logic (1 i i .) , a:;'.'

on the other hand with what has come to be known as non-Boolean conj~~i:ctiori,
which is basically it11 operator on indiviiidal terms (I b) :

(1) a. [[John sang] and [Mary danced]].
b. [[J o h n] arid [Afary]] met a t t he opera .

One problem is to account for the fact that tliese operators may conjoin expiessions
of other types than sentences or individual terms. A second problem is t,o expic.i.2
v;hy many languages have only one word for both functions.

T h e first problem -- the occurrence of a n d as an operator on different types
has found several more or less equivalent solutions for the Boolean case, and 5 will
discuss these solutions in S e c t i o n 2. There is, however, no satisfying account
why the non-Boolean conjunction occurs in different types as well. I will (!'.scu'is
the existing approaches in S e c t i o n 3. In S e c t i o n 4, I propose what I consider
the solution to this problem. S e c t i o n 5 treats plurality as iterated conjunct.;(,^:
and contains an analysis of cumulative readings, and S e c t i o n 6 is concerned witti
the conjunction of quantifiers which yields so-called 'branching' quantifiers.

T h e second problem -- why Boolran and lion-Boolean conjunction are often
expressed by one and the same word -- is dealt with in S e c t i o n 7 Ti is sho5vn
that both conjunctions can in fact be reduced to one interpretation.

T h e article presupposes some knowledge of the use of type theory in llic: syn t ax . .
and semantics of natural languages. I will assume e and t as basic u'pes (c-ni.sties,

b. Recursive definition of Boolean conjunction for t-conjoinabie types:
- if a , a' are of type t , then a A a' as ~ s u a l ;
- if a , a' are of a t-conjoinable type (u)T, then a A a l = A u [c Y (u) A Q ' (~) ^

(where u is a variable which does not occur in a , n - I) .

This is a syncategore1natic defin1tio11 of Boolean conjunction. We C O I ~ C ! as weV
have defined i t directly: If (5) ~ is a t-conjoinable type, u is a variable of type a
and v, vf a le variables of type 5 , then the Boolean conjunction for expressions of
type (U) T is Av1AvAi~[~~(u) A ~ ' (I L)] . However, I will give the definitions in tlie more
perspicuous syricategorc1n:~tic format.

Let us look how these definitions work in the case of the examples in (2).

(5) n. M a r y sir~g.9 a n d d a n c e s .
s ing A clance(Mary) =
= Az[sing(x) A clance(x)](Mary) =
= s i w a r y) A dance(h1ary)

b. J o h n a n d Mary s i n g .
AP[P(John)] A AP[P(Mary)](s ing) =
= APf[APIP(John)] (P ') A AP[P(Mary)](Pf)](s ing) =
= s i n g f J o h n) A s ing (Mary)

c. n e w a n d expens i ve d re s s
N E W A EXPENSIVE(d re s s) =
= A P [N E W (P) A EXPENÂ§IVE(P)](clress =
= N E W (d r e s s) A E X P E N S I V E (d r e s s) ,

with NEW = \ P \ x [P (x) A new(x)], and
E X P E N S I V E = \ P \ x [P (x) A expensive(2)j :

In (5b) we first have to type-lift J o h n a n d M a r y from type e to type [et)t in

order to arrive at a t-corijoin;ible type. (Type-liftings like that are allowed h
' ~ l iake & bake sen~antics' to get the right argument-types or function-types). In
(5~:) I made tlie simplifying assumption that the predicate modifiers N E W and
E X P E N S I V E can be analyzed as intersective, that is, they can be traced back to

esisive ;i. ~oii ju~ict ion of tlie predicate they apply to and predicates new and exp
~~;liich apply to objects. Note that we have to use the rule for the reduction of
H o o l r i n i conjunction to lower types twice. The choice of variables P', J-" instead
-1, siiv, /I , i is for t t i c sake o f clarity.

162 Boolean and fin-B001ea.n 'And'
- -

truth values). If T and 5 are types, then (U)T is the type of functions that map
objects of type a to objects of type T. I will use the notation o-T to mean (a)r i f o

is a simple sy~libol. The semantic representations of words, and expiessions whose
internal structure does not matter is given in boldface, e.g., the meaning of sing is
~cpresentcd by sing, and the nl(:aning of met at the opera by met-at-the-opera.

2. B O O L E A N C O N J U N C T I O N ANFÃ 1 7 3 GENERALIZATION

As mentioned above, Boolean conjunction does not only occur as a sentence op-
erator of type t t t which takes two sentences of type t and maps them to another
sentence of type t. It can take other expressions as well -- for example, it maps
two intransitive verbs (type et) to another intransitive veib, or two terms (type e,
or type (et)tl after lifting to generalized quantifiers) to a term, or two predicate
modifiers (type (ct)ct) to another predicate nloclifier:

(2) a . Jolin sings A N D Mary dances. [type t]
b. M a r y sings A N D dances. [type <it\
c. John A N D Mary sing. [type e, after lifting type (e t) t]
d. S h e was w e a r i n g a new A N D expensive dress . [type (et}et]

.411d there arc still other types in which we can find and. This calls for a principled
explanation as to the types in which it occurs, and which meaning we should assign
to it in different types. There are several works which proposed solutions to this,
among others von Stechow (1973), Gazdar (1980), Partee and Rooth (1983) and
Keenan and Faltz (1985). The basic observation is that when we apply a complex
expression conjoined by Boolean conjunction to an argument, it distributes over
the argument For example, when we apply a complex intransitive verb like s i n g
a n d d a n c e to an individual term, we have to apply sing and d a n c e separately and
conjoin the result by a n d . This is shown in (3a); the general case is given in (3b):

(3) a. M a r y s i n g s a n d d a n c e s . <-Ã Mary sings and M a r y d a n c e s .
b. If a , a' are two expressions of type (u) r which can be conjoined by

Boolean conjunction A , and if f3 is an expression of type a , we have:
a A a'l(f3) = a(/?) A at(/?).

From this rule, the semantics of Boolean conjunction for different types follows
naturally. For example, Paitee and Root11 (1083) first define the notion of a

'conjoinable type' (here called t-conjoi~lable), and then define tlie interpretation
of Boolean conjunction for t-conjoinable types:

(4) Partee and Root11 (1983):
a Recursive definition of t-conjoinable types:
- t is a t-conjoinable type;
-- if T is a t-conjoinable type, then for all a , (C)T is a t-conjoinable

typr

Manfred Krifia 165
164 Boolean and Non-Boolean 'And'

For the examples above, we get the following analyses:

(10) a. \x1'3x, x'[xl' = x @ x' A l iusband(x) A wife(x1)](John @ M a r y) =
= 3x, x l [John 9 M a r y = J: Q} x' A husband(x) A wife(zl)]

There are other types of examples which can be handled by Link's predicate
join:

(1 1) T h i s (a) is beer and lemonade.
\x1'3x, x'[xl' = x 63 x' A beer (x) A lemonade(xl)](a)

(12) The dogs and the roosters barked and crowed all night.
W 3 x , xl[x" = x 3 x' A barked(x) A crowed(xl)]

(t he -dogs @ the- roos te rs)

(13) T h e flag (a) i s green and white.
\x"3x, x'[xf' = x x' A green(x) A white(xf)](a)

(1 4) E v e r y student and professor came to the party.

AP1APVy[P'(y) -+ P(Y)\
(Ax1'3x, x'[xl' = x @ xi A s tuden t (x) A professor(x')])(canie) =

= Vy[3x, xl[y = x Q x' A s tuden t (x) A professor(xl)] -7 c a ~ i e (~)]

The first example is true when a is a mixture of beer and lemonade (cf. Wald,
1977). The second one is true when the dogs barked and the roosters crowed all
night. The third one is true when the flag a consists of two parts which are green
and white, respectively. The case of the last example is more difficult, as tile
conjoined predicate is an argument of the quantificational determiner every. We
get an interpretation which says that every object consisting of a student and ~t

professor came. If we assume the plausible rule of 'divisivity' for predicates like
came , which can be formulated cis

if caine(x @ x') then canie(x) A caine(xl),

this amounts to:

Actually, example (14) can be treated as a case of Boolean conjunction as well
(\ye first llave to lift the preclicates s t l i d e i ~ t ancl professor from type e t to type:
((t t) t) t , conjoin them by Boolean conjunction and apply the complex predicate
to t h e determiner; see Iieeiian and Faltz, 1985). However, we should explain
why a 11atiii~iiI interpretation needs the lifting of the predicates of type c t to type

((t t) t) t . In gciici ; i l i t is ;issuiiicd tliiit liftin",only occurs wlu-11 iirr(-ssi\l y (sot '

3. T H E NON-BOOLEAN CONJUNCTION AND ATTEMPTS FOR
ITS GENERALIZATION

As already indicated in the introduction, there is another use of and which cannot
be a case of Boolean conjunction, as it applies to types which are not t-conjoinable,
namely e , and which does not allow for distribution over arguments. For example,
the following equivalence does not hold:

(6) Barbara and h f a t s wrote a n article together. }A
Barbara wrote a n article t o n h e r and Mats wrote a n article together.

The fact that this use of and cannot be traced back to Boolean conjunction was
observed by several authors, notably Masscy (1976), Link (1983), and Hoeksenla
(1983). To capture its semantics, these authors propose an operation which maps
entities onto a new entity, their 'sum' or 'collection'. In (G) , we can assume that
Barbara and Mats refers to the sum individual consisting of Barbara and Mats,
and that the predicate applies to that sum individual.

(7) Barbara and M a t s wrote a n article together.
wrote-an-article-together(Barbara @ M a t s)

Here, "(5" denotes a two-place operation in tlie domain of entities such that when-
ever we have two entities a , b, a & b is another entity. That is, "@" is of type eec.
There are different ways to spell out the semantics of this operation. One is to
think of "8" as the join operation of a join semi-lattice (cf. Link, 1983). Then
we assume that "(&" is idempotent (a @ a = a) , symmetric (a @ b = b @ a), and
associative (a (5 [b ~) c] = [a @ b] c). We will stick to these assumptions, although
some of them are problematic, as will be discussed in Sec t ion 7. A plausible
model for the domain of entities is a Boolean algebra (possibly without a bottom
element), where "&" denotes the join operation. So the non-Boolean conjunction
turns out to be in a way 'Boolean', after all. From now on, I will call "@" the
6 . join'.

As with Boolean conjunction, there are examples which suggest that non-Bode-
an conjunction does not only live in type eee, but in other types as well. For
example, Link (1983) discusses cases where we can assume that it might apply to
expressions of type e t :

(8) a. John and M a r y are husband and wife,
b. boy and girl who kissed each other

Link (1983) therefore introduces a ~reclicate join of type (et)(et)et whose interpre-
tation is derived from the join of entities. If we use "@" both for join of entities
and predicates, the rule can be given as follows:

(9) If a , a' are predicates (type et), then
a 5, a' = Auff3u, u'[ul' = u @ u' A a (u) A af(u ')]

(whrrc 11, u ' , u" are variables of type e that do not occur free in 0,~').

(15) Derivation of type
a. e =+ e eee => eee

b. e; eee =+ ee e =^> e 1

c. e; eee; e => e et => et

d. e; eee; e; et => et 2

eee; e; et => et (et)t => (et)t
eee; e; et; (et)t =?Â t 3
eee; et; (et)t = ̂ et (et)t => (e

eee; et; (ct)t; (et)t => t

Interpretation as Lambda-terms:

eec; (et)t; (et)t => (et)t (remove 1)

eee; (et)t * ((et)t)(et)t (remove 2)
eee ((et)t)((et)t)(et)t (remove 3)

(16) Every student and every met.
ATAT'AP[T(Ay[Ti(Ax[P(x @ y)])])]

(APVx[student(x) -+ P(x)])(APVx[professor(x) -+ P(x)])(rnet) =
= Vy(student(y) -+ Vx(professor(x) 4 met (x 6 y)]]

This gives us the right result in this case. However, the Lambek calculus is too
restricted; it cannot provide all the lifting rules we need. In general, we have to
lift the join operation from type eee to a type (T)(T)T. This is possible according
to the Lambek calculus in the case of T = (et)t, but not for every type T . For
example, with the possible exception of (21) the followingtypes r don't allow a
lifting from eee to (T)(T)T:

166 Boolean and Non-Boolean 'And'

Partee and Rooth, 1983), and so the reading where (14) applies t o persons who
are both students and professors should be the most natural one, if not the only
one. Furthermore, cases with collective predicates, like every boy and girl kissed
each other, cannot be handled by Boolean conjunction at all.

We have seen that Link's predicate join can explain a range of facts. However,
he only assumes a lifted version of join for predicates and gives no general rule
for the lifting of the join of entities to other types. There are two attempts which
propose such a rule, namely Partee and Rooth (1983) and Hoeksema (1988).

Partee and Root11 try out their recipe for the lifting of Boolean conjunction on
Link's join operation. They define a notion of an e-conjoinable type (they call
it s-conjoinable) parallel to the notion of a t-conjoinable type as a type ending
in e, and generalize the join operation for individuals in a similar fashion as the
Boolean conjunction for t-conjoinable types. But much to their dissapointment,
they realize that in Montague's type hieraichy the only e-conjoinable type in use
is se, the type of individual concepts. (See Krifka, 1986, for a discussion of the
join operation foi individual concepts.)

Hoeksema also txied to define the join operation for other types than type e . His
first attempt (Hoeksema, 1983) is not of much interest for a general lifting opera-
tion, as it is essentially restricted to quantifiers (type (et)t). In short, he defines a
join operation for 'atomic' quantifiers (that is, quantifiers which denote ultrafilters
or unions of ultrafilters in every model). The definition amounts roughly to: If
Qi, Q2 are atomic quantifiers, then Qi @ Q2(A) iff there is an x, y, where x is a
minimal element of Ql and y is a minimal element of Q2, such that A(x @ y).

Hoeksema (1988) is more interesting, for he proposes to type-raise "@" accord-
ing to the general rules of the Lambek calculus and its interpretation in terms of
lambda-terms (cf. Lan~bek, 1958, van Benthem, 1986, 1987). In a natural deduc-
tion type version of the Lambek calculus (which slightly differs from the one used
by Hoeksema), we can get the following interpretation of the join for quantifiers,
type (et)t:

(17) boy and girl who kiss each other [T = et]

168 Boolean and Non-Boolean 'And'

-- i f a, a' are of an e-conjoinable type (u) t , then
a Q) a' = Aut'3u,u'[u" = u @I u' A a (u) A a'(u')],

where u, u ' , u" are variables of type a not occurring free in a , a ' , or

more general:
- if a , a' are of an e-conjoinable type (a]) . . .(a,,>(, then

aQjal=

= A X] . . . ~,,3i/l 21 .. . yn I zn
[y1GJ:i = x 1 A . . . A y n @ z n =

xn A Q (Y I) . . . (~ n) A ~ ' (z i) . . . (~ 4 1 ,
where x l , yl , z1 are variables of type g , , . . ., and xn ,yn ,zn are va1i-
ables of type o n , all not occurring fxee in a, a'.

This obviously gives us Link's predicate join for the case when a,a' are of type
e t . Let us look whether it yields the right result for other types as well - for
example, for type (t t ') e t :

(27) green and white (f lag) [type (et)et]
GREEN &WHITE =
= AP1'A.z"3P, P',X, x'[P1' =
= P C P' A xu = x 6 x' A G R E E N (P) (x) A WHITE(P1) (x ')]

We must apply the rule for generalized conjunctiorr a second time. Using ditFer-
ent variables of type e for the sake of perspicuity, P @ P' can be spelled o u t 2.:::

\y"3y,y'[yJ' = y Q) y' A P (y) A Pt(y')]:

We assume that G R E E N and WHITE are intersective predicate modifiers and
icndcr GREEN as ,\PAx[P(x) A gree i~ (x)] , and similarly for WHITE:

To see whether this is an adequate representation, let us consider the treatment
o f , i .-icntcncc like the following one:

(2s) Th.9 (a) i.9 a green and white flag.
\P"\.rt'3P, P', x, x1

[Vyt'[p"(y") - 3y, y'[yt' = y @ y' A p (y) A ~ ' (I J ')] A d' = x @ z'A
A P(J) A g r e e n b) A P'(.T') A wliite(;rt)](flt '<g)(a) =

(18) green and white flag [T = (ei)et]
(19) John's and Mary's house [T = (et)(et)t]
(20) extremely and moderately expensive dresses [r = ((ei)ct)(ei)et]
(21) The planes flew above and below the c louds [r = e(et)et or ((ci)t)(ei)ct]
(22) J o h n a n d M a r y read and sang a p o r n and a song [r = eet]
(23) the father and the mother of J o h n [r = eel

The leason is that these liftirigs (with the exception of (21)) do not preserve the so-
called e-count or t-count. However, derivations in the Lambek calculus necessarily
preserve e-count and t-count (cf. van Benthem, 1986, 1987). The e-count is defined
as follows: e lias an e-count of 1, and the e-count of a type (a i r is the e-count
of T minus the e-count of a . The definition of t-count is parallel. For type eec
the e-count ii> -1 and the t-count is 0. But, to give just two examples, for type
(et)(et)et the t-count is -1, and for type ((et)et)((et)et)(et)et the e-count is 0.

We conclude that both the suggestions of Partee and Rooth (1983) and of Hoek-
sema (19%) are not general enough to cover all the types for which we want t o
lift the join opeiation for individuals.

However, there is an obvious generalization of Link's procedure for the construe-
tion of a predicate join out of a join operation for entities to a lifting operation
for oilier types as well. If we look at the case of join of predicates, the following
formula suggests itself:

(24) If a , Q ' are of type (u)t and / ? , / ? I are of type a , and both a and a' and j3
and 0' can be conjoined by non-Boolean conjunction, then we have:

a(/?) A at(/3') - ̂Q e a'(,!? @ Dl).

For example,

(25) a. J o h n s ings and M a r y ' d a n c e s Ã‘ J o h n and M a r y s ing and dance .
b. J o h n s ings a n d M a r y s ings Ã‘ J o h n and M a r y s ing .
c. J o h n s ings and J o h n dances Â¥Ã J o h n sings and dances .

Note that we cannot replace "Ã‘> in (24) by "Â¥Â¥-Ãˆ as the "+-'I direction does not
hold in general (cf. J o h n and Mary met). The generalization (24) suggests the
following defi~lition for a ge11er:tlized join operation, n~odeled according to Partett
and Rooth's treatment of generalized Boolean conjunction:

(26) a. Recursive definition of e-conjoinable types:
- e is an e-conjoinable type;
- if a is an e-conjoinable type, then (a) (is an e-conjoinable type, or

more general:
- if 01 , . . . , an are c-conjoinable types, then (a ,) . . . (o',,)t is an e-con-

joinable type.

b. Recursive definition of non-Boolean conjunction:
- i f a , a' are of type e , then a @ a' as above;

170 Boolean and Non-Boolean 'And'

This says that a is a green and white flag if the predicate flag can be partitioned
into two predicates P, P' and a can be partitioned into two entities x , x' such that
P applies to x , P' applies to x', x is green, and x' is white. Let us look zit a
simple model to see whether this analysis is correct. We assume that flag has an
extension of three flags as shown below. Then P and P' form a partition of flag
of the type we are looking for.

g reen: m, white:

example partition: flag = P (p P' , where P, P' are as follows:
x Y

As indicated, we find x and x' in the extension of P and P' such that P applies
to x, P' applies to x', x and x"n1ake up a, and x is green, x' is white.

However, there is a problem, as (28) claims that P, P' are such t h a whenever
we have an entity y in P and an entity y' in P ' , then their join must also be a flag.
For a count noun predicate like flag, this can be true just in case i t has only one
entity in its extension. With more entities in the extension, we do not get proper
representations. For example, in our model the join of what I have indicated as
y, y' in the example should be a flagas well - which obviously is not true.

So a very simple extension of Link's predicate join to other types leads to wrong
results, and we have to look for something better.

4. THE PROPER GENERALIZATION O F NON-BOOLEAN
COr'!JUNCTION

In this section, I am going to propose a generalization of conjuction which gets
rid of the unwelcome consequences of the simple extension of Link's predicate
join Also, its definition will turn out to be simpler than (261, the geneializcd

to generalize existential quantification to other types. Existential quantification
expresses the maximal value of a sentence for a range of variable assignments;
for example, 3x4 is the maximal value of with respect to all assignments of x.
Perhaps the clearest way to introduce a general maximalization is with the help
of an operator s u p which takes a variable of arbitrary type and a sentence, and
yields the maximal value of the variable for which the sentence is true:

(34) If u is a variable and < ̂ is an expression of type t , then
sup (u , a) = ci iff <^[ft/u] and for all a' such that ^>[a'/u\, a' C a.

Here, <[>[a/u] is like <!>, but with all free occurrences of u replaced by a. With s u p ,
we can formulate a constraint for conjunction which applies to e-based types as
well:

(35) If a , a' are of type (u l) . . . (u n) r , if u , uf and uff are variables of type â ,
~ 2 . . . un are variables of type 0 2 . . . u,,, and v is a variable of type T , none
of which occur free in a , a', then

\ u " \ u - > . . . Au,,
[s u ~ (v , 3 ~ , u'[u" = u U U' A v = [o(u) U Q ' (u ')] (~ ~) . . . (~ n)])]
Ct u 0'.

In the case of t-based types, this reduces to the definition (32), as v is a variable
of type t and equals 1 (truth) if the sentence in the second argument place of
s u p is true. In the case of e-based types, we also get a plausible result. To see
this, corisider a case where two expressions of type ee are conjoined (for example,
functional nouns like (the) father (of) can be analyzed as such expressions):

(36) father and mother
Ax"[sup(x'",3z, xl[x" = x U x' A xl" = [father(x) IJ motlier(xf)]])] &
E f a t h e r U m o t h e r

John and Mary's father and mother
Ax"[sup(x"', 3x, x'[xi' = x LI x A xi'' = [father(x) U mother(xf)]])]

(John U M a r y) =
= sup(x'", 3x, ~ ' [J o h n ~ M a r y = XLIX'AX"' = [father(x)~mother(x')]])

If we take 'U" as a symmetric relation, then this denotes the parents of John and
h r y if they are brother and sister, and is undefined other\vise. If we take "U"
to be asymmetric (cf. Sec t ion 7), it denotes the join of John's father and Mary's
1 l l . d l l ~ 1

A 3 c-based types play a marginal role, we will assume the constraint specified
H I (32) fur the remainder of this article.

Now let us look at the treatment of the example which caused difficulties in the
];,.st bt-ctioii:

172 Boolean and Non-BooJean 'And'

nor is it a war. But, of course, something which is cold and which is a war, say
Napoleon's invasion of Russia in 1812, would have to count as a cold war as well.
Therefore it is safer to specify recursive semantic rules as approximations. In our
case, this would yield, e.g., Aa:[cold(x) A war(x)] C cold-war. This allows for the
fact that the extension of a complex expression is larger than that, and comprises,
for instance, an idiomatic part which cannot be specified recursively. In the case
that we have only an approximation, like Ai[co3d(x) A water(x)] cold-water ,
a5 a meaning rule, we are forced to use that rule and end up with the same as if
we had assumed equality.

Note that with (31) we do not need the notion of a i-conjoinable or an e-
conjoinable type, as the definitions of inclusion and conj~inction fit for every type.
This results fioin the clefinition of inclusion cind conjuction for both basic types.

Can we derive from (31) a general rule which tells us how to interpret conjunction
for an arbitrary type? Again, we cannot expect a proper definition for it , but only
an approximation. Let us start with the conjunction of t-based types, that is, types
ending in t (these types, together with the basic type e, are the only relevant ones
anyhow). Let us a&sume that we want to conjoin two expressions Q,Q' of type
(u)t , and let us assume that u" is a variable of type a. Given (31), we can assume
that whenever we have a u a'(ul ') and u" can be partitioned into u,iil such that
u" - - u U u', we have a(u) al(u ') C a u a'(ul'). Therefore we can assume that
A U ' ~ ~ U , U ' [U " = u u' A a (u) A a1(u')] a a ' . In the general case, for relations

with n arguments, we have the following:

(32) If a , Q' are of type (a i) . . . (un)t , u, n' and u" are variables of type 01 and
u2 . . . un are variables of type u2 . . . u n , all not occurring free in a , a', then

AuilAu, . . . Au,,3t0 u'\ul' = u U u' A [a(u) U ai(u')](n,) . . . (un)] C a U a'"

This says that we can approximate a U a' by the lambda-expression on the left
side. What this amounts to can be best seen with an example. For expressions of
type et, we get the following analysis:

(33) sing and dunce [type et]
Axi13x, x'[xi' = x u x' A [sing(x) U dance(xi)]] C s ing U d a n c e =
= Vx1'[3x, x'[xl' = x 8 x' A sing(x) A dance(xi)] -+ [sing U dance](xl')]

That is, whenever the lambda-expression applies to some entity x", i t applies to
s ing U dance as well, but not necessarily vice versa. This means that (31) spec-
ifies only sufficient, but not necessary truth conditions for conjoined expressions.
However, this is presumably the only rule which tells us how the meaning of the
complex expression 51ng and dance can be related to the parts, sing, and and
dance. Therefore we can assume some pragmatic strengthening of "+" to "++",

such that whenevci an entity is in the extension of s ing U dance , it is such that
it can be partitioned into two parts, one of which sings and one of which dances.

Before we try out (32) on other cases, I will present a way to generalize this rule
for arbitrary types - up to now, it 11olds for t-l)as>:d types only There is a way

174 Boolean and Non-Boolean 'And'

Let us look now at the treatment of a sentence like the following one:

(38) That (a) is a green and white flag
[G R E E N U WHITE](flag)(a)

The only rule we have to trace back the truth conditions of G R E E N U W H I T E
to is the one developed in (37). So we have to assume:

AP1'Ax3P, P', z, 2'

[Vy, ~ ' [p (y) A P1(y') -Ã P1'(y @ yf)] A x = z @ Z'A

A P(z) A grecn(z) A P'(zf) A white(zl)](flag)(a) =
= 3P, P', z , 2'

(Vy, yl[P(y) A P1(y') -+ flag(y @ y')] A a = z @ Z'A

P(z) A green(2) A P'(zl) A white(zl)]

The basic difference from our first attempt to formalize the sentence in (28) is that
now we assume only "-*" instead of "w". Therefore P and P' need not 'exhaust'
tlie whole extension of the predicate flag. It is possible that P and P' only apply
to one clement each. Then we get a proper representation of our example, as in
the following choice of P and P':

Thus, the generalization of conjunction proposed here seems to work better than
a direct generalization of Link's definition for predicate join.

Before we will look into the conjunction of expressions of other types, especially
quantifiers, I will sketch one extension of the approach developed here to the
semantics of pluralization. It is interesting in its own right, and we will have to
make use of it later.

5. I N T E R L U D E : PLURALIZATION AS I T E R A T E D
C O N J U N C T I O N

It is obvious that conjunction and plurality are closely related concepts; for ex-
ample, if I have an apple and an apple, then I have apples. In an intuitive way
pluralization is iterated conjunction:

(39) apples = apple U apple U . . .
More formally, we can define pluralization for arbitrary types as follows:

(40) Let a be an expression of an arbitrary type, then aP (the plural expression
corresponding to a) can be defined as the smallest Q such that
-- ft ^;

(37) green and white [type (et)et]
APMAx3P, P'[P1' = P U P A [GREEN(P) U WHITE(P')](a:)l &

GREEN U WHITE

With Ay"3y, y'[y'' = y U y' A P(y) A P'(yf)} P U PI, we can derive from that the
following formula:

A [G R E E N (P) u WI1IITE(P1)](x)] C: G R E E N u WHITE

which is tantamount to:

In order to determine the truth conditions of [GREEN(P) U WHITE(Pf)](x),
we have to use the approximation rule

That is, we have to replace [GREEN(P) u WHITE(P1)] by that lambda-expres-
sion and arrive at

which is tantamount to:

Finally, we can simplify this formula in some respects for the sake of readability
and spell out GREEN as \PAx[P(x) A grecn(x)], and similarly for W H I T E :

XP"Xx3P, PI, z,zl
[Vy, !/'[[P(Y) A P'(yl)] --+ P"(y @ Y')] A x = z @ Z'A

A P(z) A green(z) A P1(z') A wl~ite(z')] G
GREEN u W H I T E

176 Boolean and Non-Boolean 'And'

Dutch firms. If we want to analyze NPs uniformly as generalized quantifiers, the
English NP 600 Dutch firms is represented by the existential quantifier

Tlie predicate have is represented by the plural version havep. Then we get the
following representation:

(43) 600 Dutch ftr711.3 have 5000 American computers.
\P3x [P(x) A Dutch-f irmp(x) A N(x) = 600)
(,\x[\P̂ x[P(x} A An-i.compP(x) A N(z) = 50001

(Ay[havep(xl y)])) =
= 3 x , y

[D u t c l ~ f i r m ~ (x) A N(x) = GOOA
A Ani-comp(y) A N(y) = 5000 A havep(i , y)]

This is true in case theie is an x which consists of 600 Dutch firms and a y
which consists of 5000 American computers and x has y in the 'plural' way. The
interpretation of havep, in turn, depends on the individual owning relations. Look
at a simple example: Assume liavefa, x) and have(6, y) arid have(b@ c, z) (which
represents that b and c have 2 collectively), then we have havep(aU ~ U C , .r U yU 2).

Of course, tins representation still allows for the fact that in cases where a
sentence like (43) is true, a sentence like three Dutch firms have f i f t y American
computers is true as well. However, we can invoke pragmatic rules of rnaximaliza-
tion o f information which force the speaker to choose as high a number as possible.
1 1 1 tin; example at hand, a sentence like n Dutch firms have m American computers
implies sentences n' Dutch firms have m' American computers, where n' < n and
I ' ni. If we assume the conversational maxime of Quantity (cf. Grice, 1967),
v-'ti~-h roughly claims that a Speaker should say as much as he truthfully can
(modulo some other rnaximes), then a hearer can implicate that the speaker used
icixirnal numbers n,m in uttering n Dutch firms have rn American computers.

6. QUANTIFIER C O N J U N C T I O N

A particularly interesting test case for our rule for generalized conjunction are
quantifiers. Conjoined quantifiers were the paradigm case for the use of so-called
liiiiiidii~lg quantifiers' in natural language. Here I will show that an adequate
iradiiia, for these sentences falls out from the assumptions we made so far.

We start with an easy example which should exemplify general conjunction for
expressions of type (c o t :

(4-1) a boy and a g i r l [type (et)t]
W1'% P'[P1' = P u P' A [a -boy(P) u a-girl(P')] a h o y U a-girl

- for all ft', if y3' Q y3, then a U ft' & y3.

I assume here that oc & d , that is, that plural expressions include their singular
versions (see Krifka, 1989, for an argument to that effect in tlie case of nomi-
nal predicates). It is obvious tliat iteration of pluralization docs not change tlie
meaning, tliat is, we have a p p = aP.

As an example, we can prove that the predicate

is included in apples , as we have A & a p p l e ~ a p p l e and appleLJapple & applep .
The notion of plurality developed here is compatible with Link (1983).

Now plurality makes sense not only with nominal predicates, but with verbal
predicates as well. For example, we can assume that the predicate s ing originally
applies only to single persons who sing. However, we can derive a plural predicate
s ingp from that. It is this predicate which is applied in cases like the following
one:

(41) John and Mary sing.
singp(John' U Mary ') = s ingP(John) A s ingp(Mary) =
= s ing (John) A s lng (Mary)

One use of such plural predicates is that they allow us to give a straightforward
semantics for so-called 'cumulative readings' which does not need stipulations like
those proposed by Scha (1981). Scha's original example and his treatment goes as
follows (card is interpreted as the cardinality function on sets):

(42) 600 Dutch firms have 5000 American computers.
card(Ax[DutcliJirm(.i:) A 3 y [A m c ~ m p (y) A have(x, y)]]) = 600

A card(Ax[Amconip(x) A 3y[D~i t c l i - f i r i~~(y) A havc(y,x)]]) =
= 5000

The sentence should be true if the number of Dutch firms which have American
computers is 600, and the number of American computers owned by Dutch firms
is 5000. The problem is to derive this rather complicated representation in a nat-
ural way. Furthermore, Scha's representation docs not cover, without additional
stipulations, cases with collective individual owning relations, for example, cases
where one computer is owned by several firms or vice versa.

The representation of plurality developed here provides us with :L natural way
to treat cumulative readings. We can assume that NPs which contain number
words can be analyzed as indefinite NPs, with the number word being something
like an adjective - for example, a modifier based on a measure function
(see Link, 1987, Krifka, 1986, for this analysis). Here, we simply assume that we
have a measure function N for entities, and that 600 Dutch firms is analyzed on
the basis of a predicate Ax[Dutcli-firmP(x) A N(x) = 6001 (see Kriilvii, 1986, for
a more detailed analysis). This predicate applies to entities which consist of 600

(48) Most of the circles and most of the stars are all connected by lines.

Let us concentrate on example (48). In the preferred reading, this sentence is true
in F igure 2, but false in F igu re 1.

F i g u r e 1 Figure 2

There are different ways to render the prominent reading of (48). The original
one is to have two quantifiers which are not in each other's scope:

most-circles x
(49) most-s ta rs y connected(x, y)

This reflects the fact that the prominent reading of (48) is neither captured with
most circles having scope over most stars, nor the other way round. It has been
shown by Barwise (1979) and others that we get a linearized representation if
we allow for second-order quantification. If we interpret quantifiers as predicates
of type (e t) t and assume that the two quantifiers Q1 , Q2 are upward monotone,
then we have the following equivalence, where " x " denotes Cartesian product (cf.
Westerstahl, 1987):

(50) Branching quantifiers for upward monotone quantifiers Q l , Qi'.

Let us assume the ordinary General Quantifier analysis in which a quantifier
like most stars is represented by most(star) , the set of sets which contain more
than half of the stars (that is, mos t = APfAP(card(Prl PI) > 5card(P1)]). Then

g(:t the following representation for (48):

(51) 3 (P 2 s ta r)3(P1 C circle)
[mos t (s t a r) (P) A most(circle)(P1)A

A Vx, xl[P(x) A P'(xl) -> connected(x, y)]]

That is, there is a set P of stars which makes up more than half of the stars, and
a set P' of circles which makes up more than half of the circles, such that every
c l n i ~ ~ i i t in P is connected to every element in P' (and as connected is symmetric,
t l i i \ holds vice vcis;i. as well).

178 Boolean and Non-Boolean 'And'

and some simplifications, this equals

APf'3P, P'
[Vx , xl(P(x) A Pf (2') -+ P1'(x @ xf)]A

A 3x[boy(x) A P(x)] A 3x[girl(x) A P'(xl)]] C a-boy LJ a-girl

To see how this works, we apply this representation to a reciprocal predicate
like the representation of kiss each other. Reciprocal predicates, in general, are
one-place predicates which are derived from two-place relations. In general, we
can assume that any two-place relation a has a reciprocal version a":

(45) If a is a two-place relation of type (r) (r) t , then its reciprocal version ar is
a predicate of type (r) t defined as follows:
- For all 0,y of type T , if a(/3,/3') and a()9',/?) and /3 # f t ' , then

or(/? U P I) ;

- For all a' of type (r) t , if for all / ? , / ? I of type T, if a(/3,/3') and a(/?',/?)
and 0 # /?I , then a1(/3 U / ? I) , then or C a'.

Normally, the derivation of a reciprocal form is marked by reciprocal pronouns
like each other, one another and the like, but this is not necessarily the case -
for example, the reciprocal form of connected with is connected, and n possible
reciprocal form of kiss is kiss.

Now let us look at an example:

(46) A boy and a girl kissed each other.
[a-boy U a-girl](kissr)

The only meaning rule we have for that leads us to the following assumption:

[Vx, x ' [P (x) A P1(.c') -+ kissr(x U XI)} A 3x[boy(x) A P(x)]A
A 3x[girl(x) A P1(x')]]

This gives the right t ruth conditions: It says that there are two sets, P and P ' ,
such that every x in P and every X' in P' kiss each other, and that P contains a
boy and P' contains a girl.

Now let us look at the conjunction of quantifiers which, unlike in the case con-
sidered so far, yield true branching quantifier structures (cf. Barwise, 1979, West-
erstahl, 1987). I give two typical examples (from Barwise, 1979):

(47) Most linguists and most philosophers agree with each other about branching
qi~antifiers.

180 Boolean and Non-Boolean 'And'

3 (P C A)3(P1 C 5)
[Qi(A)(P) A Q?(B)(P1) A [R n (A x I?')] C x f"]

(56) Branching quiintifiers for quantifiers Q l , Qi of the type exactly n:

- S(P C A)3(P1 C 5)
[Q1(.4)(P) A Q2(B)(P1) A [R n (A x B')] - P x P']

Westerst5111 himself developed a uniform representation; it partitions a quan-
tificr into an upward monotone and a downward monotone part wliicli are then
handled separately. Of course, this defines tlie semantics of branching quantifiers
only for a limited set of quantifiers, namely for so-called continuous quantifiers.
Bu t Westerstilil argues that branching quantification only occurs with continuous
quantifiers. Furthermore, Barwise has already claimed that acceptable cases of
quantifier conjunctions always have quantifiers of the same monotonicity type, so
according to that we don't have to assume special rules for the conjunction of
quantifiers of mixed nature.

Is tlieie a natural way in the framework developed here to cover the conjunction
of quantifiers which are not upward monotone? I think there is, and I will outline
it in tlie rest of this section.

We have to assume that the choice of P, P' is not completely arbitrary, but that
we have to choose 'maximal' sets for which it holds that every pair of elements
is related in the required way. For example, in F i g u r e 2, we have P = {b, c, d }
and P' Â¥ {g, h, i} as such maximal sets, and in F igu re 1, we have P = { b } and
P' = { g) , or P = { c } and P' = { g , / i , i } , or P = {d} and P' = {i}, or P = {e}
and P' = {j} as such maximal sets. If we choose these maximal sets, then (53)
and (5-1) are false with respect -to F igure 2.

We have to spell out the maxiniality condition in the formal representations,
and, if possible, give independent motivation for it. To start with the second
point, the independent motivation, note that the condition

Vz, x'[P(x) A PJ(z ') -+ connectcdr(x U x')],

which is a shorter form of

is derived from

connectedr = P U P' and Ax1'3z, x'[xl' = x Ux' A P(x) A Pf (z)] C; PUP'.

We have seen in Sect ion 3 that "&" cannot generally be interpreted as "=", as
t i i s yields the wrong truth conditions. However, we can still assume that there is
;i p ~ i ~ ~ i n i i t i c rule which forces us to choose P and P' in such a way that it comes
. ~.lo:iL t o "=" ;is possible - and this czui be done by choosing niaxirnal P, PI.

Now the interesting thing is that we get a similar representation if VJe ernploy
our rule for generalized conjunction. So there is no longer any need to stipulate a
rule like (50). To do so, we would have to assume that connected is represented
by the reciprocal form of connected as used in (51).

(52) Most circles and most stars are connected.
AP1'3P, P'[

Vi, x1[P(x) A P ' (x t) -+ P1'(x U xl)]A
A m o s t (c i r c l e) (P) ~
most (s ta r) (P1)] &

& [most(circle) u most(star)](coni~ected~) =
= 3P. P'

[Vx, xl[P(x) A P'(2') -Ã connectedr (x U a-')]A
A most(circle)(P) A most(star)(P1)]

This amounts to the same as the representation (51).
However, (50) only specifies the interpretation for upward monotone quantifiers.

We get the wrong truth conditions for quantifiers which are either downward
monotone, like less than four stars, or quantifiers which specify an exact num-
ber or range and therefore are neither increasing nor decreasing, such as exactly
four star3 or between. two and four stars. To see this, look a.t the representa-
tions we would assign according to our rules to the following examples (liere I use
<3 and =2 as representations of the determiners APIAP[card(P A P') < 31 and
APIAP[card(P n P') = 21):

(53) Less than three circles and less than three stars are connected.
3P, P1[Vx, xt[P(x) A P ' (xl) -+ connectedr (x U x ')] ~

A <3(circle)(J?) A <3(star)(P1)]

(54) Exactly two circles and exactly two stars are connected.
w, P1[Vx , x'[P(x) A P ' (xl) -+ c o n n e c t e d y x U x ')] ~

A =2(circle)(P) A =2(s ta r) (P1)]

According to the representation we derive by our rules, these sentences would be
true in F igu re 2 sine, e.g., P = {b, 4 and P' = { g , h } are relevant values for
and P'.

Of course, Barwise's rule (51) does not ~ i e l d the correct results in these cases
either. Therefore, Barwise (1979) proposed different representations for upward
and downward monotone quantifiers. In addition, van Benthem proposed a rule
for 'exact' quantifiers like exactly two. According to Westerstah1 (1937), we have
the following truth conditions in tliese cases:

(55) Branching quantifiers for downward monotone quantifiers Qi,Qt

Manfred Krifka. 183

It is unclear whether this corresponds to a natural interpretation of (53) - as
intuitions about branching quantifiers, especially with decreasing ones, are quite
shaky in general. However, we can show that we can expect readings of these
examples which correspond to Barwise's and van Benthem's interpretations. We
have to make two assumptions for this: First, that reciprocal predicates can be
interpreted as semantically plural, and second, that NPs like less t h a n three circles
can be interpreted as indefinite KPs.

Before I go into details, I want to point out that these two assumptions arc by no
tneiiiis ad hoc. First, we have seen in Sect ion 5 that we get a simple treatment of
cumulative readings by assuming that an NP like COO Dutch f i r n u is an indefinite
NP based on a predicate which applies to entities consisting of GOO Dutch firms. It
is a natural extension of this treatment to assume that an NP like less t h a n three
circles may apply to entities which are circles and which count less than three
circles (say, two circles). That this analysis is a plausible one, is also shown by the
fact that we can point to, say, a heap of apples and say: That ' s less t h a n t w e n t y
apples. It can be argued that less t h a n t w e n t y apples is a predicate in this case
which applies to the object pointed to.

Second, it is well-known that the rule for reciprocals we assumed so far is too
strong, c i s natural-language reciprocals have 'weaker' interpretations (cf. Langen-
doen, 1979). Two natural examples are (COa,b):

(60) a. T h e t e n children took o n e another b y the hand.
b. T h e prisoners released each other.

For example, (GOa) can be true if the children took one another by the hand in
pairs. We can get such weak interpretations of reciprocals if we assume that the
reciprocal predicate is taken as semantically plural. For example, if there are ten
children z i , . . .r5, yi . . . y5 suclithat we have took-by-the-l inncT(~, @ yi), then,
ai:ro:'c!ir>",o the rule for plural predicates and associativity of "@", we also have
took -by-tlie.hanclrP(x, @ . . . (Â y5).

These two assumptions accepted, we can get Barwise's interpretation for de-
creasing quantifiers by assuming that we have an indefinite interpretation of the
quantifiers and a plural interpretation of the reciprocal predicate. If we interpret
less than three as

we get the following interpretation:

(61) Less t h a n three circles and less t h a n three stars are connected.
p̂. I"

[h'lAXct(P, PI, c o n n e c t e d r p) ~
A <3 ,~(c i i -c lep) (P) A <3p~(starp)(P')]

182 Boolean and Non-Boolean 'And'

This maximalization can be rendered technically with the help of a family of
three-place relations M A X r of type (T) (T) (T)~ . M A X r can be specified as follows:

(57) If a , a ' , a" are expressions of type T , then M A X r (a , a ' , a") is true iff
- Q U a' C
- for every /3,Pi of type r , if a p and a' & and P U p' & a", then

Q = a and pi = a ' .

With the help of this relation, we can give the following, more specific approxima-
tion for generalized conjunction:

(58) If a,cri are of type T = (a i) . . . (c J , ,) ~ , u, 7'' and u" are variables of type UI

and u2 . . . u,, are variables of type u2 . . . o n , all not occurring free in Q', a ' ,
then

Au1'Au2 . . . Aun3u, u'
[h4AXr(u, u', u") A [a(,') U Q'(U')](U~). . . (un)!] C
Q U a i .

In the case of (53), we get the following interpretation with this new rule:

(5 9) Less t h a n three circles and less t h a n three stars are connected.
3P, P1[MAXet (P , P i , connectedr) A <3(circle)(P) A <3(star)(P ')]

This amounts to the claim that there are maximal sets P, P I such that the elements
of P and the elements of P' are all connected with each other, and that P contains
less than three circles and P1 contains less than three stars. This is false in
Figure 2 (as {b, c , d } and {g, h,i} are the only possible instantiations for P and
PI, and then we have e.g. -i< 3(circle)(P)), but true in Figure 1 (for example,
with {c} and { g , h,i} as two instantiations of 1' and P').

However, this reconstruction still docs not represent the truth conditions for
non-increasing branching quantifiers given by Barwise and van Benthem, as (59)
comes out as true in the following situation as well, and similarly exactly o n e circle
and exactly one s tar is connected (in these cases, {e} and { j } would be a proper
instantiation of P and Pi) :

Figure 3
' I ' l~is is fills(! in figures 1, 2 and 3, a-5 i t should be, according to the rule of Barwise.

184 JBooJean and Noit-Boolean 'And' --

sentence like D E T circles and D E T stars are connected we get a whole variety of
readings, depending on whether connected is interpreted as singular (connectedr)
or plural (connectedrp) , and wether the DET1s are interpreted as adjectival num-
ber words, as quantifiers, or as focusing operators. These factors may contribute
to the fact that the truth conditions of scntcnccs with branching quantifiers are
notoriously h;ird to specify.

7. OUTLOOK

In this final section, I will discuss possible modifications of the join operation and
the relation between Boolean and non-Boolean conjunction.

An obvious generalization of the conjunction is to assume operations of arbi-
trary arity, instead of two-place operations. For example, we have a three-place
operation in the following case:

(64) T h e flag is red, white, and green.

Of course, as soon as we assume arbitrary arity for the basic operations @ and A,
we generate operations of arbitrary arity for the corresponding operations in other
types as well.

If we assume associativity of the basic operations "@I' and "A", the extension
to arbitrary arity is straightforward. However, it is not clear whether we really
should think of "@" as being associative (cf. Link, 1984b, Landman, 1988, Hoek-
senla, 1938, Lonning, 1989). Some relevant examples (the brackets are intended
to represent the relevant readings):

(65) a. Napoleon and (W e l l i n g t o n and Bliicher) fought against each other.
b. ?((f . fary and John) and (Lisa. and S te fan)) and ((A n n and Bil l) and

(S te f f i and Boris)) played against each other i n the mixed-double
semi- f inah .

The intended bracketing can be indicated by the intonational structure; roughly,
bracket in the sentence corresponds to an optional pause. However, it is unclear
whether we should posit bracketings of more than one level; Lonning (19S9), who
proposed example (65b) as a case of two levels, is not sure about its status. But this
restriction may well be a performance restriction, especially due to the marginal
possibilities of marking the brackets.

I will not go into the solutions proposed for non-associativity here, but simply
want to point out that we have to assume it for non-Boolean conjunction of other
types as well. Sonic examples:

(0 6) a. The French and (the English and the Pruss ian) soldiers fought against
each other.

1). 77ie (rrd a n d white) and (ye l low and green) flags were put together.

Note that we can use a similar representation for increasing quantifiers, like
more t h a n three circles and more than three stars are connected. If we interpret
NPs like more t h a n three circles as

and connected as a plural reciprocal predicate, then this example would C C X ~ out
true with respect to figures 1 and 3, and false with respect to F igu re 2.

However, tliese analyses still do not cover van Benthem's interpretation for 'ex-
act' quantifiers. If we interpret exactly four circles as

then a sentence like exactly four circles and exactly four s tars are. connected wo\~ld
come out true in f igures 1 and 3 Van Benthem's rule, on the other hand, reciuires
that there is a connection between every element in {b, c, (1, e} and every element
in { g , /i, i , k}, so that it cannot be true tliese cases.

We can get van Benthem's iiitcrpxetation as well, i f we assume that be connected
is interpreted in the strict sense, ;is a non-plural piedicate connected' , and that
exactly is> treated as a focusing operator in the sense of Jacobs (1983) and Hoot11
(19S5). These operators have to be analyzed in some fonn of alternative semantics
(see vou Stcchow, 1988, for an overview). Complications and variations aside, the
focusing operator exact ly can be analyzed as expressing the fact that the item in
its focus is the only item of a range of alternatives for which the sentence is true
and is maximally informative. For example, a sentence like

(62) J o h n has exact ly three children.

ence expresses the fact that 3 is the pos t informative value of n for which the cm-t

pattern J o h n has n children is true. In the case of

(63) Exact ly three circles and exactly three stars are connected.

I assume that the first occurrence of exactly focuses on the first occurrence of three,
and the second occurrence of exactly focuses on the second occurrence of three.
So what (63) says is that n = 3 and m = 3 are the maximally informative values
for which the sentence pattern n circles and 711 stars are connected is true. When
we interpreted connected strictly, that is, iis connectedr , then this is true only i f
P, P' in

MAXe,(P, P', connectedr) A = rn(circle)(P) A = n(siar)(P)

are unique, that is, there is only one maximal partition of connected ' into P , P f .
If P, Pf are not unique, then n and m could not be maximally inforinai.ive. Thus
we get viin Benthcm's truth conditions.

To conclude this section, I wish to emphasize that sentences with branching
quantifiers, as outlined here, are not treated as a uniform piienoincnon. With a

Manfred Krifka 187 186 Boolean and Non-Boolean 'And'

b. green and white [type e t]
h 3 x 1 x'[xl' = x U x' A green(z) A whitc(z')]

In (68a), we get Boolean conjunction if we assume x = x'. We can assume that
this is the dcf;mlt case for tlie interpretation of x and x'. In (68b), this default
interpretation cannot be carried through, because green and whi te are contra-
dictory. Therefore we have to assume that x # x', and arrive at non-Boolean
conjunction.

Thus, Boolean conju~iction ends up as a particularly simple case of non-Boolean
conjunction.

NOTE

* I had the chance to discuss the ideas developed here with several colleagues -
including Barbara Partee during a stay in Amherst in May 1988, Godehard Link,
Sebastian LGbner and Jeff Pelletier at a workshop in Tiibingen in June 1989, Fritz
H:urini, mid Zunana Dobes. Thanks to them all.

REFERENCES
Bar wise, J . 1979. 'On Branching Quantifiers in English'. Journal of Philosophical

Logic 8, 47-80.
van Benthem, J . 1986. 'The Semantics of Variety in Categorial Grammar'. In: W.

~uszkowski et al, Categorial Grammar. John Benjamins, Amsterdam.
van Benthem, J . 1987. 'Categorial Grammar and Type Theory'. ITLI Prepubli-

cation Series 87-07. To appear in Linguistics and Philosophy.
G azdar, G . 1980. 'A cross- ~ a t e ~ o r i a l Semantics for Coordination'. Linguistics

and Philosophy 3, 407-409.
Gillon, B. 1987. 'The Readings of Plural Noun Phrases in English'. Linguistics

and Philosophy 10, 199-220.
Grice, P. 1967. Logic and Conversation. Unpublished ms. of the William James

Lectures, Harvard University. Partly published in P. Cole and J. Morgan,
cds., Syntax and Semantics 3: Speech Acts. Academic Press, New York, 1976.
pp. 41-58.

Hintikka, J . 1974. 'Quantifiers vs. Quantification Theory'. Linguistic Inquiry 5,
153-177.

Hoekscnia, J . 1983. 'Plurality and Conjuction'. In: Alice ter Meulen, ed., Studies
in Model-Theoretic Semantics. Foris, Dordrecht.

H O (> ~ S V I I I ~ L , J . 19S8. 'The Semantics of Non-Boolean and'. Journal of Semantics
0 . 19 40.

J;i(Â¥oLS J . 1983. Fokus und SMen . Zur Syntax und Sernantik von Gradpartikein
1 1 1 1 D r ~ ~ t . s c h ~ n . Nicrneyer, T i ib i~ i~ci i .

Therefore we have to assume that the non-associativity of non-Boolean conjunction
for entities has to be passed to the non-Boolean conjunction for expre~ssions of
other types.

Furthermore, it might be the case that non-Boolean conjunction is not symmet-
ric (cf. Link, 1984):

(67) a. J o h n and M a r y are husband and wife.
b. J o h n and M a r y are 28 and 31 years old (respectively).
c. T h e flag is red and white.

In these examples, we cannot switch the order of the conjoined elements salva
veritate. In (Gi'a,b), which have two conjunctions each, the order of the conjuncts
have to match (this is well-known for the re~pectively-construction, which has been
cited as a case where natural language is not context-free). (6 7 ~) evokes some
spatial order, either from top to bottom or from left to right. This is similar to
natural uses of Boolean conjunctions, which, in the case of non-stative sentences,
evoke a temporal order (cf. M a r y married J o h n and got pregnant vs. / i f a r y got
pregnant and marr ied J o h n) .

Again, I will not go into the solutions which can be proposed for the non-
symmetry of conjunction. One attractive is, I think, to assume that
conjunction is basically synlmetric, but subject to other semantic modules for
which the order of utterances is decisive. One could think of different levels of
semantic representations which interact with each other, sixnikir to the assumption
of different tiers in phonology. What is important here is that any solution which
is proposed for non-Boolean conjunctions of entities should be generalized for non-
Boolean conjunction of expressions of other types.

Another point which should .be stressed here is that the generalization of con-
junction developed in this article offers a uniform notion of a conjuction which
captures both the Boolean and non-Boolean variety. We have seen that Boolean
conjunction is basically an operation on type (, and non-Boolean conjunction is
an operation on type e. However, to derive an interesting generalization for non-
Boolean conjunction we had to make use of Boolean conjunction as well. In partic-
ular, the notion of conjoinable types for Boolean conjunction and for non-Boolean
conjunction coincide, if we exclude the basic types. This suggests that Boolean
and non-Boolean conjunctions can be traced back to one uniform notion of con-
junction. This also would explain why languages typically use one word, as for
example English a n d , for both types.

Indeed, with (31) we already have proposed such a uniform and generalized
notion of conjunction, as this definition applies to general Boolean conjunction as
well. To see this, look at the following examples:

(68) a. n e w and expensive [type e t]
\x1'3x, xl[x" = x u x' A ncw(x) A expensive(x')]

188 Boolean and Non-Bo ;>lean 'And'

Keenan, E. and L.M. Faltz. 1985. Boo!ean Semantics for Natural Language.
Reiclel, Dordrecht.

Krifka, M. 1986. Nominaireferenz L I I I C ~ Zeitkonstitution. Zur S e m i t i k von Mass-
entermen, PluraJtermen und Aspektklassen. Dissertation, Universitat Miinchen.
To be published by Wilhelm Fink, Miinchen,1989.

Landman, F. 1988. 'Groups, Plural Individuals and Intentionality'. In: J. Groe-
nendijk, M. Stokhof and F. Veltman, cds., Proceedings of the Sixth Amsterdam
Colloquium. ITLI, University of Amsterdam. pp. 197-217.

Langendocn, T.D. 1978. 'The Logic of Reciprocity'. Linguistic Inquiry 9,177-197.
Link, G. 1983. 'The Logical Analysis of Plurals and Mass Terms: A Lattice-

Theoretical Approach'. In: R. Biiuerle, Clir. Schwarze, A. von Stechow, eels.,
cleaning, Use and Interpretation of Language. De Gruyter, Berlin and New
York. pp. 303-323.

Link, G. 1984. 'Hydras: On the Logic of Relative Clause Constructions with
Multiple Heads'. In: F. Landman and F. Vcltinan, ecls., Varieties of Formal
Semantics. Foris, Dordrecht. pp. 245--257.

Link, G. 1984b. 'Plurals'. To appear in A. von Stechow and D. Wunderlich, eds.,
Handbudi der Semantik. Atheniium, Kronberg.

L ~ n n i n g , J ,T. 1989. 'Some Aspects of the Logic of Plural Noun Phrases'.
COSMOS-Report 11, Department of Mathematics, University of Oslo.

Massey, G.J. 1976. 'Tom, Dick, and Harry, and all the king's men'. American
PhiJosophical Quarterly 13 , 89-107.

Partee, B.H. and M. Rootli. 1983. 'Generalized Conjunction and Type Ambigu-
ity'. In: R. Bauerle, Clir. Scliwarze, A. von Stccliow, eels, Adeaning, Use and
Interpretation of Language. De Gruyter, Berlin and New York. pp. 361-383.

Rootli, M. Association with Focus. P1i.D. Dissertation, University of Massachu-
setts at Amherst.

Scha, R.J.H. 1981. 'Distributive, Collective, and Cumulative Quantification1. In:
J.A. Grocncndijk, T.M. Jansen, M. Stokof, cds., Formal Methods in the Study of
Language. Mathematical Centre Tracts 135, Amsterdam. Part 2, pp. 483-512.

von Stechow, A . 1974. "-A kontextfreie Sprachen: Ein Beitrag zur naturlichen
formalcn Semantik'. Linguistische Cerichte 34, 1-33.

von Stechow, A. 1988. 'Focusing and Backgrounding Operators'. Arbeitspapier 6,
Fachgruppe Sprachwissenschaft, Universitiit Iionstanz.

Wald, J.D. 1977. Stuff and Words: A Semantic and Linguistic .4r~aIysis of Nan-
Singular Reference. P1i.D. clissertation, Brancleis University.

Westerstihl, D. 1987. 'Branching Generalized Quantifiers and Natural Language'.
In: Peter Gardenfors, ed., Generalized Quantifiers. Linguistic and Logical Ap-
proaches. Reidel, Dordrecht. pp. 269-298.

