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1. INTRODUCTION

The subject of this article is the semantics of the coordination end in English and
its equivalents in other natural languages.* In particular, I will be concerned on
the one hand with the so-called Boolean conjunction, which is a sentence operator
that shares essential properties with conjunction in propositional logic (1a), and
on the other hand with what has come to be known as non-Boolean conjunction,
which is basically an operator on indiviudal terms (1b):

(1) a. [[John sang] and [Mary danced]].
b. [[Jehn] and [Mary]] met at the opera.

One problem is to account for the fact that these operators may conjoin expressions
of other types than sentences or individual terms. A second problem is to explain
why many languages have only one word for both functions.

The first problem — the occurrence of and as an operator on different types —
has found several more or less equivalent solutions for the Boolean case, and 1 will
discuss thesc solutions in Section 2. There is, however, no satisfying account fur
why the non-Boolean conjunction occurs in different types as well. T will discuss
the existing approaches in Section 3. In Section 4, I propose what I consider
the solution to this problem. Section 5 trecats plurality as iterated conjunction
and contains an analysis of cumnulative readings, and Section 6 is concerned with
the conjunction of quantificrs which yields so-called ‘branching’ quantifiers.

The second problem — why Boolean and non-Booleau conjunction are often
expressed by one and the same word — is dealt with in Section 7. Tv is shown
that both conjunctions can in fact be reduced to one interpretation.

The article presupposes some knowledge of the use of type theory in the syntax
and semantics of natural languages. I will assume e and ¢ as basic iypes (entitics,

Laszlo Kalman and Laszls Pélos (eds.), Papers from the Sccond Symposiuin o Laog
gunge Akadémial Kiads, Budapest, 1990 Copyright by the anthors Al aght o vonerad




Manfred Krifka

st
2]
[

b. Recursive definition of Boolean conjunction for t-conjoinable types:
— if a, o’ are of type ¢, then a A o' as usual;
— ifa, o' arc of a t-conjoinable type (¢)7, then aAa’ = Mufa(u)Aa’(u)
(where u is a variable which does not occur in a, o).

This is a syncategorematic definition of Boolean conjunction. We could as wel!
have defined it directly: If ()7 is a t-conjoinable type, u is a variable of type o
and v,v' are variables of type g, then the Boolean conjunction for expressicns of
type (o)1 is A" AvAufv(u) Av'(w)]. However, I will give the definitions in the more
perspicuous syncategorematic format.

Let us look how these definitions work in the case of the examples in (2)

(5) a. Mary sings and dances.
sing A dance(Mary) =
= Az[sing(z) A dance(z)](Mary) =
= sing(Mary) A dance(Mary)

b. John and Mary sing.
AP[P(John)] A AP[P(Mary)](sing) =
= AP'[AP[P(John)](P") A AP[P(Mary)]( P"))(sing) =
= sing(John) A sing(Mary)

c. new and ezpensive dress
NEW A EXPENSIVE(dress) =

.= AP[NEW(P) A EXPENSIVE(P)|(dress) =
= NEW(dress) A EXPENSIVE(dress),

with NEW = APAz[P(z) A new(z)], and
EXPENSIVE = AP)Az[P(z) A expensive(z)] :

= Az[dress(z) A new(z)] A Az[dress(z) A expensive(z)] =
= Az'(Az[dress(z) A new(z)]](z') A Ar(dress(z) A expensive(z)](a')] =
= Az[dress(z') A new(z') A expensive(z')]

In (5b) we first have to type-lift John and Mary from type e to type (ei)t in
order to arrive at a {-conjoinable type. (Type-liftings like that are allowed in
‘shake & bake semantics’ to get the right argument-types or function-types). In
(5¢) I made the simplifying assumption that the predicate modifiers NEW and
IXPENSIVE can be analyzed as intersective, that is, they can be traced back to
i conjunction of the predicate they apply to and predicates new and expensive
which apply to objects. Note that we have to use the rule for the reduction of

Booleau conjunction to lower types twice. The choice of variables P’ 2 instead
of, say, P, ris for the sake of clarity.
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truth values). If 7 and o are types, then (o)7 is the type of functions that map
objects of type ¢ to objects of type 7. I will use the notation o7 to mean (o) ifo
is a simple symbol. The semantic representations of words and €xpressions \Yhoste
internal structure does not matter is given in boldface, ¢.g., the meaning of sing is
represented by sing, and the meaning of met at the opera by met_at_the_opera.

2. BOOLEAN CONJUNCTION AND ITS GENERALIZATION

As mentioned above, Boolean conjunction does not only occur as a sentence op-
erator of type ttt which takes two sentences of type t and maps them to jcmothcr
sentence of type t. It can take other expressions as well — for examnple, 1t maps
two intransitive verbs (type et) to another intransitive verb, or two terms (type e,
or type (et)t, after lifting to generalized quantifiers) to a term, or two predicate
modifiers (type (et)ct) to another predicate modifier:

(2) a. John sings AND Mary dances. {type t]
b. Mary sings AND dances. [type et]
c. John AND Mary sing. [type e, after lifting type (et)t]
d. She was wearing a new AND expensive dress. [type (et)et]

And there are still other types in which we can find and. This i:alls for a pr1nc1p‘led
explanation as to the types in which it occurs, and which meaning we s}.xould assign
to it in different types. There are several works which proposed solutions to this,
among others von Stechow (1973), Gazdar (1980), Partee and Rooth (1983) and
Keenan and Faltz (1983). The basic observation is that when we ap.ply‘ a complex
expression conjoined by Boolean conjunction to an argt-lment,.lt‘ dxstrlbut.es over
the argument. For example, when we apply a complex intransitive verb like sing
and dance to an individual term, we have to apply sing and dance se;')arat.ely rand
conjoin the result by and. This is shown in (3a); the general case is given in (3b):

(3) a. Mary sings and dances. «— Mary sings and Mary dances. N
b. If a, a' are two expressions of type (o) which can be conjoined by
Boolean conjunction A, and if 3 is an expression of type o, we have:

[o A '](B) = a(B) A ' (B).

From this rule, the semantics of Boolean conjunction for different type§ follows
naturally. For example, Partee and Rooth (1983) first defiue thc.s notion o'f a
‘conjoinable type’ (here called t-conjoinable), and then define the interpretation
of Boolean conjunction for ¢-conjoinable types:

(4) Partee and Rooth (1983):
a. Recursive definition of {-conjoinable types:
— tis a t-conjoinable type; ' o
—if 7 is a t-conjoinable type, then for all o, (o)7 is a t-conjoinable
type.
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For the examples above, we get the following analyses:

(10) a. Az"3z,2'{z" = 2 & ' A husband(z) A wife(z')](John & Mary) =
= 3z,z'(John ® Mary = z @ z' A husband(z) A wife(z'))

b. APAy[P(y) A kiss_each_other(y))
(Az"3z,2'[z" = 2 @ 2' A boy(z) A girl(z')]) =
= Aydz, 2’y = 2 & ' A boy(z) A girl(z') A kiss_each_other(y))
There are other types of examples which can be handled by Link’s predicate
- join:
(11) This (a) is beer and lemonade.
Az"3z,2'[z" = 2 & 2’ A beer(z) A lemonade(z’)](a)

(12) The dogs and the roosters barked and crowed all night.
Ar"3z,2'{z" = 2 & ' A barked(z) A crowed(z')]
(the.dogs & the_roosters)

(13) The flag (a) is green and white.
Az"3z,z'[z" = 2 & 2’ A green(z) A white(z')](a)

(14) Every student and professor came to the party.
AP APYY[P'(y) — P(y)]
(Az"3z,2'[z" = z & ' A student(z) A professor(z')])(came) =
= Vy[3z,z'[y = 2 & ' A student(z) A professor(z’)] — came(y)]

The first example is true when a is a mixture of beer and lemonade (cf. Wald,
1977). The second one is true when the dogs barked and the roosters crowed all
night. The third one is true when the flag a consists of two parts which are green
aud white, respectively. The case of the last example is more difficult, as the
conjoined predicate is an argument of the quantificational determiner every. We
get an interpretation which says that every object consisting of a student and &

professor came. If we assume the plausible rule of ‘divisivity’ for predicates like
came, which can be formulated as

if came(z & z') then came(z) A came(z'),

this amounts to:

Vr{student(z) — came(z)] A Vz[professor(z) — came(z)]

Actually, example (14) can be treated as a case of Boolean conjunction as well
(we first have to lift the predicates student and professor fromn type et to type
{((ct)t)t, conjoin them by Boolean conjunction and apply the complex predicate
to the determiner; see Keenan and Faltz, 1985). However, we should explain
why a natural interpretation needs the lifting of the predicates of type et to type
{tet)t)t. In general 1t as assumed that lifting only oceurs when necessary (see
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3. THE NON-BOOLEAN CONJUNCTION AND ATTEMPTS FOR
ITS GENERALIZATION

As already indicated in the introduction, there is another use of and which cannot
be a case of Boolean conjunction, as it applies to types which are not t-conjoinable,
namely e, and which does not allow for distribution over arguments. For example,
the following equivalence does not hold:

(6) Barbara and Mats wrote an article together. ¢
Barbara wrote an article together and Mats wrote an article together.

The fact that this use of and cannot be traced back to Boolean conjunction was
observed by several authors, notably Massey (1976), Link (1983), and Hoeksema
(1983). To capture its semantics, these authors propose an operation which maps
entities onto a new entity, their ‘sum’ or ‘collection’. In (6), we can assume that
Barbara and Mats refers to the sum individual consisting of Barbara and Mats,
and that the predicate applies to that sum individual.

(7) Barbare and Mats wrote an article together.
wrote_an_.article_together(Barbara @ Mats)

Here, “®” denotes a two-place operation in the domain of entities such that when-
ever we have two entities a,b, a & b is another entity. That is, “@” is of type eeec.
There are different ways to spell out the semantics of this operation. One is to
think of “@" as the join operation of a join semi-lattice (cf. Link, 1983). Then
we assume that “@" is idempotent (a @ a = a), symmetric (a ® b = b@ a), and
associative (¢ @ [b@ c] = [a ® b] & ¢). We will stick to these assumptions, although
some of them are problematic, as will be discussed in Section 7. A plausible
model for the domain of entities is a Boolean algebra (possibly without a bottom
clement), where “@” denotes the join operation. So the non-Boolean conjunction
turns out to be in a way ‘Boolean’, after all. From now ou, I will call “®” the
‘join’.

As with Boolean conjunction, there are examples which suggest that non-Boole-
an conjunction does not only live in type eee, but in other types as well. Tor
example, Link (1983) discusses cases where we can assurne that it might apply to
expressions of type et:

(8) a. John and Mary are husband and wife.
b. boy and girl who kissed each other

Link (1983) therefore introduces a predicate join of type (et)(et)et whose inter.p?@
tation is derived from the join of entities. If we use “@” both for join of entitics
and predicates, the rule can be given as follows:

(9) If a,a' are predicates (type et), then
a®a = "Ju,u' v = udu' Aa(u)Aa(u'))
(where u,u', u" are variables of type e that do not occur free in a, a').
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(15) Derivation of type

a. e=>e eee = ece

b. e; eee = ee e=>e 1

c. e; cee; e > e et = et

d. e; eee; e; et = et 2

e. ece; e; et => et (et)t = (et)t

f. ece; ¢; et; (et)t = ¢ 3

g eee; et; (et)t = et (et)t = (et)t

h. ece; et; (et)t; (et)t =t

1. eee; (et)t; (et)t = (et)t (remove 1)

i eee; (et)t = ((et)t)(et)t (remove 2)

k. eee = ((et)t)((et)t)(et)t (remove 3)

Interpretation as Lambda-terms:

a. &

b. & y

c. T8y P

d. P(zay)

e. Az(P(z & y)) T

: T'(alP(z 8 5))

3 A[T'Qz[Pzoy)) T

h. T(y[T'(Az[P(z & y)])])

3 AP OWIT O [P(z & y)))]

j AT'APTQy[T'(Az[P(z & y)))))]

k. ATAT' AP[T(Ay[T'(Az[P(z & y)))))]

As an example, consider the analysis of the following sentence:

(16) Every student and every professor met.
XTAT AP(T(\(T' (0] P(z & y)]))]
(APVz{student(z) — P(z)])(APVz[professor(z) — P(z)])(met) =
= Vy(student(y) — Vz{professor(z) — met(z & y)]|

This gives us the right result in this case. However, the Lambck calculus is too
restricted; it cannot provide all the lifting rules we need. In general, we have to
lift the join operation from type eee to a type (7)(r)r. This is possible according
to the Lambek calculus in the case of r = (et)t, but not for every type 7. For

c.xample, with the possible exception of (21) the following types = don’t allow a
lifting from eee to (7)(7)r:

(17) boy and girl who kiss each other [r = et]
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Partce and Rooth, 1983), and so the reading where (14) applies to persons who
are both students and professors should be the most natural one, if not the only
one. Furthermore, cases with collective predicates, like every boy and girl kissed
each other, cannot be handled by Boolean conjunction at all.

We have seen that Link’s predicate join can explain a range of facts. However,
he only assumes a lifted version of join for predicates and gives no general rule
for the lifting of the join of entities to other types. There are two attempts which
propose such a rule, namely Partee and Rooth (1983) and Hoeksema (1988).

Partee and Rooth try out their recipe for the lifting of Boolean conjunction on
Link’s join operation. They define a notion of an e-conjoinable type (they call
it s-conjoinable) parallel to the notion of a t-conjoinable type as a type ending
in e, and generalize the join operation for individuals in a similar fashion as the
Boolean conjunction for t-conjoinable types. But much to their dissapointment,
they realize that in Montague's type hierarchy the only e-conjoinable type in use
is se, the type of individual concepts. (See Krifka, 1986, for a discussion of the
join operation for individual concepts.)

Hoeksema also tried to define the join operation for other types than type e. His
first attempt (Hoeksema, 1983) is not of much interest for a general lifting opera-
tion, as it is essentially restricted to quantifiers (type (et)t). In short, he defines a
join operation for ‘atomic’ quantifiers (that is, quantifiers which denote ultrafilters
or unions of ultrafilters in every model). The definition amounts roughly to: If
Q,,Q, are atomic quantifiers, then Q, ® Q,(A) iff there is an z,y, where z is a
minimal element of Q, and y is a minimal element of Q2, such that A(z & y).

Hoeksema (1988) is more interesting, for he proposes to type-raise “®” accord-
ing to the general rules of the Lambek calculus and its interpretation in terms of
lambda-terms (cf. Lambek, 1958, van Benthem, 1986, 1987). In a natural deduc-
tion type version of the Lambek calculus (which slightly differs from the one used
by Hoeksema), we can get the following interpretation of the join for quantifiers,
type (et)t:
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— if a,a’ are of an e-conjoinable type (o)t, then

a®a = du"Ju,u' [ = u@u Aa(u)A (W),
where u,u’, u" are variables of type o not occurring free in o, o, or
more general:
if a, @' are of an e-conjoinable type (o,)...(o,)t, then

a®a =

=Azy...2,3y1,21,-- Yn, Zn
Mme&an=0A . Aya®z,=
In Aa(yl)"'(yn) /\Q'(Zl). --(Zn)}7

where zy,y,, z; are variables of type 0;,..., and z,,y,, z, are vari-
ables of type on, all not occurring free in a, o',

This obviously gives us Link’s predicate join for the case when a,a’ are of type

et. Let us look whether it yields the right result for other types as well — for
example, for type (et)et:

(27) green and white (flag) [type (et)et]
GREEN ¢ WHITE =
= AP"Az"3P P z,z'|P" =

=P& P Az" =16 2" AGREEN(P)(z) A WHITE(F')(2)

We 1nu§t apply the rule for generalized conjunction a second time. Using differ-
cntl variables of type e for the sake of perspicuity, P @ P’ can be spelled out as
M 3y, Yy =y Y APY)A P (Y)):
AP"Xz"3P, P! z,z’
[P" =X "3y, y' [y =y @y APY)AP () Az" =z &a'A
A GREEN(P)(z) A WHITE(P')(2")] =
= AP"Az"3P P z,z' '
[P o 39yl = y &y A P A PO AS" = 26 oA
A GREEN(P)(z) AWHITE(P')(z')]

We assume that GREEN and WHITE are intersective predicate modifiers and
render GREEN as APAz[P(z) A green(z)], and similarly for WIIITE:
AP"Xz"3AP P 2,2’
VY [P (") = v’ [y" =y &y’ A P(y) A P'(y)]IA
Az" =z & z' AP(z) Agreen(z) A P'(z') A white(z')]
To sce whether this is an adequate representation, let us consider the treatment
of a sentence like the following one:
(25) This (a) 13 a green and white flag.
AP"Ac"3P, P 1 2’

Vy"[P"(y") = By vy =y @y AP(Y) AP (Y) A" =2 @ 2'A
A P(r)Agreen{z) A P'(z") A white(z)](flag)(a) =
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) green and white flag [T = (et)et]

) John’s and Mary’s house |7 = (et)(et)t]

) extremely and moderately ezpensive dresses {r = ((et)et)(et)et]

) The planes flew above and below the clouds [r = e(et)et or ((et)t)(et)et]
) John and Mary read and sang a poem and a song [ = eel]

) the father and the mother of John [r = e¢]

N AN N TN S
[N A N R

The reason is that these liftings (with the exception of (21)) do not preserve the so-
called e-count or t-count. However, derivations in the Lambek calculus necessarily
preserve e-count and t-count (cf. van Benthem, 1986, 1987). The e-count is defined
as follows: e lias an e-count of 1, and the e-count of a type (o) is the e-count
of 7 minus the e-count of ¢. The definition of t-count is parallel. Tor type eee
the e-count is —1 and the t-count is 0. But, to give just two examples, for type
(et)(et)et the t-count is —1, and for type ((et)et)((et)et)(et)et the e-count is 0.

We conclude that both the suggestions of Partee and Rooth (1983) and of Hoek-
sema (1988) are not general enough to cover all the types for which we want to
lift the join operation for individuals.

However, there is an obvious generalization of Link’s procedure for the construe-
tion of a predicate join out of a join operation for entities to a lifting operation
for other types as well. If we look at the case of join of predicates, the following
formula suggests itself:

(24) If @, a’ are of type (o)t and B, are of type ¢, and both & and o' and f
and 3’ can be conjoined by non-Boolean conjunction, then we have:

a«(f)Nc'(B') > a@a(BOF).

For example,

(25) a. John sings and Mary'dances — John and Mary sing and dance.
b. John sings and Mary sings — John and Mary sing.
c. John sings and John dances — John sings and dunces.

Note that we cannot replace “—” in (24) by “~”, as the “«" direction does not
hold in general (cf. John and Mary met). The generalization (24) suggests the
following definition for a generalized join operation, modeled according to Partee
and Rooth’s treatment of generalized Boolean conjunction:
(26) a. Recursive definition of e-conjoinable types:
-— € is an e-conjoinable type;
— if ¢ is an e-conjoinable type, then (o)t is an e-conjoinable type, or
more general:
— if 0;,...,0, are e-conjoinable types, then (oy)...(ou)t is an e-con-
joinable type.
b. Recursive definition of non-Boolean conjunction:
- if a, o’ arc of type e, then a @ o' as above;
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Join operation. (26} is complicated because it uses botiy It
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conjuncution te generalize non-Boolean conjunction, and Lecause o
n-place velation (n > 2) cannot be traced back to the ioin of an ( Y-nlace

relation, but has to bc reduced ‘at ouce’.
A central idea of my proposal is that we have to generalize two
ously, namcly a conjunction operation and an inclusion relation.

idea is that we define both the conjunction operation and the inclusion K‘““"%‘Lion for

the basic types ¢ and ¢, and have only one generalization formuls for conjuaction
and inclusion, regar LU(,.S.S of which tvpe we generalize ¢

).

We start with the recursive definition of a gencral inclusion relation,
15 the same as that which was proposed in van Benthemn (1686, 198
constraints for type changes:

(30} Recursive definition of a gene'au”ch inclusion relation “C7;

— oo’ areofl type e, then ¢ C o' i o = o,

— if a,a” arc of type ¢, then o C o’ iff o« — o’ {that is
w1 | PR . ;
@ 1s fess or equal than the truth value of &),

X , . e g . - :
— o, 0’ are of type (o7, then ¢ T o iff for all @ of type o, of ) 5 /()
3 e h s d CER e

When o, a' are of type o, o T o amovnns w0 setmchasion, o C ol - Now we
can give a definition for a generaliz nction oper sy
(31) Recursive (partial) definition of a g L
- if a0’ are of type ¢, ?hvn oo ,
— it «, o’ are of type ¢, then ot f\' = Ao
— o, 0’ are of : 1 :{ojr and 3,8 #re of type o, then

(U (I Caa’ (B /3 )

= \ )
Note that the last part is a generalization of ithe rule for “@”
(2, a(NA(3) = and(8a8).

Ihat last part is obviously not a proper definition of o generalized conjuncti
as we claim "2 instead of *=". So it only gives a const
for the relation between “U” and “027. This is an essc
to be developed here; it mptul >s the fact that, in the

we (‘a-‘[l()t rm)lu(‘c g by Hemy? (5& thp dlSpU‘:SlUfl of
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ration for o

5100 b) ihe meaning of its pdrt 1s not, a valid meaning ”?e @

.
Ll 4
there are reasons to assume that recursive ipeaning rules typically have the

i

of approximations, and that definitions are nothing but the Hmiting e

SO,

-
can be seenin the following example. The usual formulation of the meaning rule
for the eoviposition of an (intersective) adjective with a noun yields a

which applies (o entitics to which both the '1dif\(~iive and thc nou:
caomnpleswe v assume that cotdowater = Azfecld(:

modiernatie ves this docs not bhold, For cxaumlc, o ul‘ oy

—~
—
>
=
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=3P P z,2

[Vy"{flag(y") & v, y'[y" =y @y’ A P(y) A P'(y")]IA
Aa=z®z' AP(z)Agreen(z) A P'(z') A white(z'))

This says that a is a green and white flag if the predicate flag can be partitioned
into two predicates P, P’ and a can be partitioned into two entities z,z’ such that
P applies to z, P’ applies to ', T is green, and z' is white. Let us look at a
simple model to see whether this analysis is correct. We assume that flag has an
extension of three flags as shown below. Then P and P’ form a partition of flag

of the type we are looking for.
white:

(29) green:

As indicated, we find z and 2’ in the extension of P and P’ such that P applies
to =, P' applies to z', z and z'*make up a, and z is green, =’ is white.

However, there is a problem, as (28) claims that P, P’ are such that whenever
we have an entity y in P and an entity ¥’ in P’, then their join must also be a flag.
For a count noun predicate like flag, this can be true just in case it has only one
entity in its extension. With more entities in the extension, we do not get proper
representations. For example, in our model the join of what I have indicated as
v,y in the example should be a flag as well — which obviously is not true.

So a very simple extension of Link’s predicate join to other types leads to wrong
results, and we have to look for something better.

4. THE PROPER GENERALIZATION OF NON-BOOLEAN
CONJUNCTION

In this section, I am going to propose a generalization of conjuction which gets
rid of the unwelcome consequences of the simple extension of Link’s predicate
join. Also, its definition will turn out to be simpler than (26), the generalized
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to generalize existential quantification to other types. Existential quantification
expresses the maximal value of a sentence for a range of variable assignments:
for example, 32® is the maximal value of ® with respect to all assignmeonts of :1:.’
Perhups the clearest way to introduce a general maximalization is with the help
of an operator sup which takes a variable of arbitrary type and a sentence, and
yields the maximal value of the variable for which the sentence is true: ,

(34) If u is a variable and ¢ is an expression of type t, then
sup(u, ®) = « iff ®[a/u] and for all a' such that ®[a'/u), o’ C a.

Here, ®[a/u]is like ®, but with all free occurrences of u replaced by a. With sup,

\\'ellcan formulate a constraint for conjunction which applies to e-based types as
well:

(33) If @, 0’ are of type (0y).. (on)7, if u, u’ and u” are variables of type o,

Uz...up are variables of type o3 ...0,, and v is a variable of type 7, none
of which occur free in a,a’, then

Au"Aug ..,

- E:\ch(;‘,fiu, v'u" = ulu' Av=[a(u)Ua’(u))(us)...(u,)])]

In the case of t-based types, this reduces to the definition (32), as v is a variable
of ty.pc t and equals 1 (truth) if the sentence in the second argument place of
sup is tf'l.le. In the case of e-based types, we also get a plausible result. To see
this, Fonsxder a case where two expressions of type ee are conjoined (for example
functional nouns like (the) father (of ) can be analyzed as such expressions): ,

(36) father and mother .
Az"[sup(z",3z,2'[z” = z Uz’ A " = [father(z) U motl !
,dz, = 1er(z C
C father U mother | @ IDle

John and Mary’s father and mother

Az"[sup(z",3z,2'[z" = z Uz A 2" = [father(z) U mother(z')]})]
(JohnU Mary) =

= sup(z"”, 3z, r'[JohnUMary = zUz' Az" = [father(z)Umother(z')]])

I\fIwe t'akc “U" as a symmetric relation, then this denotes the parents of John and
Mary if they are brother and sister, and is undefined otherwise. If we take “U”

to b;c asymmetric (cf. Section 7), it denotes the join of John’s father and Mary’s
mother.

A :\‘5 ¢-based types play a marginal role, we will assume the constraint specified
i (32) for the remainder of this article.

| Now lfzt us look at the treatment of the example which caused difficulties in the
ast section:
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nor is it a war. But, of course, something which is cold and which is a war, say
Napoleon’s invasion of Russia in 1812, would have to count as a cold war as well.
Therefore it is safer to specify recursive semantic rules as approximations. In our
case, this would yield, e.g., Az[cold(z) A war(z)] C cold.war. This allows for the
fact that the extension of a complex expression is larger than that, and comprises,
for instance, an idiomatic part which cannot be specified recursively. In the case
that we have only an approximation, like Az[cold(z) A water(z)] C cold.water,
as a meaning rule, we are forced to use that rule and end up with the same as if
we had assuined equality.

Note that with (31) we do not need the notion of a t-conjoinable or an e-
conjoinable type, as the definitions of inclusion and conjunction fit for every type.
This results from the definition of inclusion and conjuction for both basic types.

Can we derive from (31) a general rule which tells us how to interpret conjunction
for an arbitrary type? Again, we cannot expect a proper definition for it, but only
an approximation. Let us start with the conjunction of t-based types, that is, types
ending in t (thesc types, together with the basic type e, are the only relevant ones
anyhow). Let us assume that we want to conjoin two expressions a,a’ of type
(0)t, and let us assume that u" is a variable of type 0. Given (31), we can assume
that whenever we have a U a'(u") and u" can be partitioned into u,u’ such that
u" = uUu', we have a(u) U o'(u') € al a(u”). Therefore we can assume that
Au"Ju,u'{u” = v u' Aa(u) Aa'(u')] € atea'. In the general case, for relations
with n arguments, we have the following:

(32) If a,a’ are of type (01)...(0a)t, u, v’ and u" are variables of type o, and
Uy ...u, are variables of type g,...0,, all not occurring free in a, o, then
AuAug . Aug e, u'[u” = U Ala(u)Ua! (v ) (uz) - (un)] Ealal,

This says that we can approximate a Ll o' by the lambda-expression on the left
side. What this amounts to can be best seen with an example. For expressions of
tvpe et, we get the following analysis:

(33) sing and dance [type et]
Az"3z,z'[z" = z Uz’ A[sing(z) U dance(z')]] C sing U dance =
= V2" [3z,2'[z" = = & 2’ A sing(z) A dance(z')] — [singU dance](z")]

That is, whenever the lambda-expression applies to some entity z", it applies to
sing U dance as well, but not necessarily vice versa. This means that (31) spec-
ifies only sufficient, but not necessary truth conditions for conjoined expressions.
However, this is presumably the only rule which tells us how the meaning of the
complex expression sing and dance can be related to the parts, sing, and and
dance. Therefore we can assume some pragmatic strengthening of “—” to “&7,
such that whenever an cntity is in the extension of sing U dance, it is such that
it can be partitioned into two parts, one of which sings and one of which dances.

Before we try out (32) on other cases, I will present a way to generalize this rule
for arbitrary types — up to now, it holds for t-based types only. There is a way
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Let us look now at the treatment of a sentence like the following one:

(38) That (a) 1s a grecn and white flag
[GREEN U WHITE](flag)(a)

The only rule we have to trace back the truth conditions of GREEN U WHITE
to is the one developed in (37). So we have to assume:

AP"Az3P, Pz,
Yy, ¥' ([P AP'(Y') - P'(y&y' Az =z A
A P(z) A green(z) A P'(z') A white(z"))(flag)(a) =
= EP, P" zl zl
Yy, ' [P(y) A P'(y') — flag(y @ y' )] Aa = 2@ 2'A
P(z) Agreen(z) A P'(z') A white(z')]

The basic difference from our first attempt to formalize the sentence in (28) is that
now we assume only “—” instead of “«~". Therefore P and P’ need not ‘exhaust’
the whole extension of the predicate flag. It is possible that P and P’ only apply

to one element each. Then we get a proper representation of our example, as in
the following choice of P and P’:

P:{E‘

Thus, the generalization of conjunction proposed here seems to work better than
a direct generalization of Link’s definition for predicate join.

Before we will look into the conjunction of expressions of other types, especially
quantifiers, I will sketch one extension of the approach developed here to the

semantics of pluralization. It is interesting in its own right, and we will have to
make use of it later.

5. INTERLUDE: PLURALIZATION AS ITERATED
CONJUNCTION

It is obvious that conjunction and plurality are closely related concepts; for ex-

ample, if I have an apple and an apple, then I have apples. In an intuitive way
pluralization is iterated conjunction:

(39) apples = appleUappleU...
More formally, we can define pluralization for arbitrary types as follows:

(40) Let a be an expression of an arbitrary type, then a? (the plural expression

corresponding to a) can be defined as the smallest 8 such that
— aC g
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(37) green and white {type (et)et]
AP")\z3P, P'(P" = PU P A [GREEN(P)U WHITE(P')|(z)] C
C GREENUWHITE

With Ay"3y,y'[v" = yUy' AP(y)AP'(y')l € PUP’, we can derive from that the
following formula:

AP"\z3P, P'
[(Ay"3y, ¥’
[v" =y Uy AP(y)ULP'(y)]] E P'A
A {GREEN(P) U WHITE(P')|(z)] € GREEN U WHITE

which is tantammount to:

AP"\z3P, P'
(Vy, ¥'[Py) A P'(¥')) = P"(y @ y')A
A [GREEN(P) U WHITE(P')|(z)] C
C GREEN U WHITE

In order to determine the truth conditions of {GREEN(P) U WHITE(P")}(z),

we have to use the approximation rule

Az"3z,2'[2" = z U 2 A[GREEN(P)(z) U WHITE(P')(")]] C
C GREEN(P) U WHITE(P')

That is, we have to replace [GREEN(P)U WHITE(P')] by that lambda-expres-

sion and arrive at

AP")\z3P, P’
Vy, ' (([P(v) A P'(y")] = P'(y @ y")) = P"(y)IA
AXz"3z,2'(z" = zU 2z A[GREEN(P)(z) U WHITE(P')(z')]J(z)] C
C GREEN U WHITE

which is tantamount to:

AP"\z3P, P'
[y, v’ o
(lIP(y) A P'(y")] = P"(y@y")] = P"(y")IA
A3z, 2 [z = &z’ AGREEN(P)(z) A WHITE(P')(z')]] C
C GREENUWIHITE

Finally, we can simplify this formula in some respects for the sake of readability
and spell out GREEN as APAz{P(z) A green(z)], and similarly for WHITE:

AP"Az3P, Pz, 2
¥y, v ([P() A P — PPy @ ) Az =2 @ 2
A P(z) A green(z) A P'(2') A white(z')] €
C GREEN U WIIITE
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Dutch firms. If we want to analyze NPs uniformly as generalized quantifiers, the
English NP 600 Dutch firms is represented by the existential quantifier

AP3z[P(z) A Dutch firm”(z) A N(z) = 600)].

The predicate have is represented by the plural version have?. Then we get the
following representation:

(43) 600 Dutch firins have 5000 American computers.
AP3z[P(z) A Dutch_firm®(z) A N(z) = 600]
(Az[AP3z[P(z) A Am_comp®(z) A N(z) = 5000
(Aylhave?(z, y)) =
= 3z,y
[Dutchfirm?(z) A N(z) = 600A
A Ami.comp(y) A N(y) = 5000 A have?(z, y)]

This is true in case there is an r which consists of 600 Dutch firms and a y
which consists of 5000 American computers and z has y in the ‘plural’ way. The
interpretation of have?, in turn, depends on the individual owning relations. Look
at a simple example: Assume have(a, z) and have(b,y) and have(b® ¢, z) (which
represents that b and c have z collectively), then we have have’(allbUc, zUyUz).
Of course, this representation still allows for the fact that in cases where a
sentence like (43) is true, a sentence like three Dutch firms have fifty American
computers is true as well. However, we can invoke pragmatic rules of maximaliza-
tion of information which force the speaker to choose as high a number as possible.
lu the example at hand, a sentence like n Dutch firms have m American computers
inplies sentences n' Dutch firms have m' American computers, where n’ < n and
m' < m. If we assume the conversational maxime of Quantity (cf. Grice, 1967),
which roughly claims that a dpeaker should say as much as he truthfully can
(inodulo some other maximes), then a hearer can implicate that the speaker used
maximal numbers n, m in uttering n Dutch firms have m American computers.

6. QUANTIFIER CONJUNCTION

A particularly interesting test case for our rule for generalized conjunction are
quantifiers. Conjoined quantifiers were the paradigm case for the use of so-called
"branching quantifiers’ in natural language. Here T will 'show that an adequate
reading for these sentences falls out from the assumptions we made so far.

We start with an easy example which should exemplify general conjunction for
expressions of type (et)t:

(44) « boy and a girl [type (et)t]
AP"IP, P'[P" = PU P’ Ala_boy(P)Ua_girl(P')] C a_boy U a_girl

with a boy - AP3r{boy'(r) A P(z)] (and similarly for a_girl), with
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— forall B/, if ' C 3, then aU p' C B.

I assume here that a C o, that is, that plural expressions include their singular
versions (see Krifka, 1989, for an argument to that effect in the case of nomi-
nal predicates). It is obvious that iteration of pluralization does not change the
meaning, that is, we have a?? = af.

As an example, we can prove that the predicate

A =Az"3z,2'(z" = z Uz' A apple(z) A apple(z’))

is included in apples, as we have A C appleUapple and appleUapple C apple®.
The notion of plurality developed here is compatible with Link (1983).

Now plurality makes sense not only with nominal predicates, but with verbal
predicates as well. For exarmnple, we can assume that the predicate sing originally
applies only to single persons who sing. However, we can derive a plural predicate

sing? from that. It is this predicate which is applied in cases like the following
one:

(41) John and Mary sing.
sing?(John' U Mary') = sing?(John) A sing?(Mary) =
= sing(John) A sing(Mary)

One use of such plural predicates is that they allow us to give a straightforward
semantics for so-called ‘cumulative readings’ which does not need stipulations like
those proposed by Scha (1981). Scha’s original example and his treatment goes as
follows (card is interpreted as the cardinality function on sets):

(42) 600 Dutch firms have 5000 American compuiers.
card(Az[Dutch_firm(z) A Jy[Am.omp(y) A have(z,y)]]) = 600
A card(Az[Am.omp(z) A Jy[Dutch_frm(y) A have(y, z)}]) =
= 5000

The sentence should be true if the number of Dutch firms which have American
computers is 600, and the number of American computers owned by Dutch firms
is 5000. The problem is to derive this rather complicated representation in a nat-
ural way. Furthermore, Scha’s representation does not cover, without additional
stipulations, cases with collective individual owning relations, for example, cases
where one computer is owned by several firms or vice versa.

The representation of plurality developed here provides us with a natural way
to treat cumulative readings. We can assume that NPs which contain number
words can be analyzed as indefinite NPs, with the number word being sorething
like an adjective — for example, a predicate modifier based on a measure function
(see Link, 1987, Krifka, 1986, for this analysis). Here, we simply assume that we
have a measure function N for entities, and that 600 Dutch firms is analyzed on
the basis of a predicate Az[Dutch_firm?(z) A N(z) = 600] (see Kriika, 1986, for
a more detailed analysis). This predicate applies to entities which consist of 600
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(48) Most of the circles and most of the stars are all connected by lines.

Let us concentrate on example (48). In the preferred reading, this sentence is true
in Figure 2, but false in Figure 1.

a o * f a o * f

b o * g b o * g

d o * 1 d o * 1

e o * j e o * 7
Figure 1 Figure 2

There are different ways to render the prominent reading of (48). The original
one is to have two quantifiers which are not in each other’s scope:

( )most-circlesx

most_stars y } connected(z,y)

This reflects the fact that the prominent reading of (48) is ncither captured with
most circles having scope over most stars, nor the other way round. It has been
shown by Barwise (1979) and others that we get a linearized representation if
we allow for second-order quantification. If we interpret quantifiers as predicates
of type (et)t and assume that the two quantifiers Qy, Q2 are upward monotone,

then we have the following equivalence, where “x” denotes Cartesian product (cf.
Westerstahl, 1987):

(50) Branching quantifiers for upward monotone quantifiers Q,, Q5:

Ql(A) ! ' '
S5} R 3P C 3P € BYQUANPIA Qu(B)P) AP X P C R

Let us assume the ordinary General Quantifier analysis in which a quantifier
like most stars is represented by most(star), the set of sets which contain more
than half of the stars (that is, most = AP'AP[card(PNP') > jcard(P')]). Then
we get the following representation for (48):

(91) 3(P C star)3(P' C circle)
[most(star)(P) A most(circle)(P')A
ANz, z'[P(z) A P'(z') — connected(z, y)])

That is, therc is a set P of stars which makes up more than half of the stars, and
a set P’ of circles which makes up more than half of the circles, such that every

clement in P is connected to every element in P’ (and as connected is symmetric,
this holds vice versa as well).
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Az"3z,2'[z" =z U AP(z)AP'(z)) TS PUP
and some simplifications, this equals

AP"3P, P!
Vz,z'[P(z) A P'(z') = P'"(z & z')}A
A Jz[boy(z) A P(z)] A 3z(girl(z) A P'(z')]] € a_boy U a_girl

To see how this works, we apply this representation to a reciprocal predicate
like the representation of kiss each other. Reciprocal predicates, in general, are
one-place predicates which are derived from two-place relations. In general, we
can assunie that any two-place relation « has a reciprocal version o”:

(45) If « is a two-place relation of type (7)(7)t, then its reciprocal version a” is
a predicate of type (r)t defined as follows:
— For all 8,3 of type 7, if a(B,8') and a(B',8) and B # ', then
(AU B');
— For all a' of type (7)t, if for all 8, " of type 7, if a(8,8’) and a(8', B)
and 8 # (', then a'(fU B'), then a" C o'

Normally, the derivation of a reciprocal form is marked by reciprocal pronouns
like each other, one another and the like, but this is not necessarily the case —
for example, the reciprocal form of connected with is connected, and a possible
reciprocal form of kiss is kiss.

Now let us look at an example:

(46) A boy and a girl kissed each other.
[a_boy U a_girl](kiss")

The only meaning rule we have for that leads us to the following assumption:

AP"3P, P’
[Vz,z'[P(z) A P'(z') = P"(z U z')]A
A Jz[boy(z) A P(z)] A 3z[girl(z) A P'(z")}}(kiss") =
= 3P, P’
Vz,z'[P(z) A P'(z') — kiss"(z U z')} A 3z[boy(z) A P(z)]A
A Jz(girl(z) A P'(z")]]

This gives the right truth conditions: It says that there are two sets, P and P’,
such that every z in P and every z' in P’ kiss each other, and that P contains a
boy and P’ contains a girl.

Now let us look at the conjunction of quantifiers which, unlike in the case con-
sidered so far, yield true branching quantifier structures (cf. Barwise, 1979, West-
erstahl, 1987). I give two typical examples (from Barwise, 1979):

(47) Most linguists and most philosophers agree with each other about branching
quantifiers.
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«~ 3(P C A)JA(P' C B)
[Q1(ANPYAQBYP)AN[RN(A X B"))C P x P}
(56) Branching quantifiers for quantifiers Q,, @, of the type ezactly n:
Q1 (4) } R o
(D)
— I(P C A)J(P'C D)
[Qu(A)P) A Q2(B)YP') A[RO(A x B')] = P x P’|

Westerstahl himself developed a uniform representation; it partitions a quan-
tifier into an upward monotone and a downward monotone part which are then
handled separately. Of course, this defines the semantics of branching quantifiers
only for a limited set of quantifiers, namely for so-called continuous quantifiers.
But Westerstahl argues that branching quantification only occurs with continuous
quantifiers. Furtherinore, Barwise has already claimed that acceptable cases of
quantifier conjunctions always have quantifiers of the same monotonicity type, so
according to that we don’t have to assume special rules for the conjunction of
quantificrs of mixed nature.

Is there a natural way in the framework developed here to cover the conjunction
of quantifiers which are not upward monotone? I think there is, and I will outline
it in the rest of this section.

We have to assume that the choice of P, P’ is not completely arbitrary, but that
we have to choose ‘maximal’ sets for which it holds that every pair of elements
is velated in the required way. For example, in Figure 2, we have P = {b,¢,d}
and P’ = {g,h,i} as such maximal sets, and in Figure 1, we have P = {b} and
P' = {g}, or P = {c} and P' = {g,h,i}, or P = {d} and P’ = {i}, or P = {e}
and P’ = {j} as such maximal sets. If we choose these maximal sets, then (53)
and (54) are false with respect to Figure 2.

We have to spell out the maximality condition in the formal representations,
and, if possible, give independent motivation for it. To start with the second
point, the independent motivation, note that the condition

Vz,z'(P(z) A P'(z') — connected(z L z')],
which is a shorter form of
Az"3z,2'[x" = z Uz’ A P(z) A P'(2')] C connected”,
15 derived fromn
connected” = PU P’ and Az"3z,z'[z" = zUz' AP(z)AP'(z)] € PUP'.

We have scen in Section 3 that “C” cannot generally be interpreted as “=", as
this yields the wrong truth conditions. However, we can still assume that there is
a pragmatic rule which forces us to choose P and P’ in such a way that it comes
axn clove to =" as possible — and this can be done by choosing maximal P, P'.
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Now the interesting thing is that we get a similar representation if we employ
our rule for generalized conjunction. So there is no longer any need to stipulate a
rule like (50). To do so, we would have to assume that connected is represented
by the reciprocal form of connected as used in (51).

(52) Most circles and most stars are connected.
AP"3P, P'(
Vz,z'[P(z) A P'(z') — P"(z uz')]A
A most(circle)(P)A
most(star)(P')] C
C [most(circle) U most(star)](connected”) =
=3P P’
[Vz,z'[P(z) A P'(z') — connected”(z U 2')]A
A most(circle)(P) A most(star)(P')]

This amounts to the same as the representation (51).

However, (50) only specifies the interpretation for upward monotone quantifiers.
We get the wrong truth conditions for quantifiers which are either downward
monotone, like less than four stars, or quantifiers which specify an exact num-
ber or range and therefore are ncither increasing nor decreasing, such as ezactly
four stars or between two and four stars. To see this, look at the representa-
tions we would assign according to our rules to the following examples (here I use
<3 and =2 as representations of the determiners AP’ AP{card(P A P'") < 3] and
AP'AP[card(P N P'") = 2]):

(33) Less than three circles and less than three stars are connected.
3P, P'Vz,z'[P(z) A P'(z') — connected"(z Ui z')]A
A <3(circle)(P) A <3(star)(P')]

(54) Ezactly two circles and ezactly two stars are connected.
3P, P'\Vz,z'[P(z) A P'(z') — connected”(z Uz')]A
A =2(circle)(P) A =2(star)(P')]

According to the representation we derive by our rules, these sentences would be
true in Figure 2 sinc, e.g., P = {b,c} and P’ = {g, h} are relevant values for P
and P'.

Of course, Barwise’s rule (51) does not yield the correct results in these cases
either. Therefore, Barwise (1979) proposed diffcrent representations for upward
and downward monotone quantifiers. In addition, van Benthem proposed a rule
for ‘exact’ quantifiers like ezactly two. According to Westerstahl (1987), we have
the following truth conditions in these cascs:

(55) Branching quantifiers for downward monotone quantifiers @1, Q2:

O
QZ(B)} R
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It is unclear whether this corresponds to a natural interpretation of (53) — as
intuitions about branching quantifiers, especially with decreasing ones, are quite
shaky in general. However, we can show that we can expect readings of these
examples which correspond to Barwise's and van Benthem’s interpretations. We
have to make two assumptions for this: First, that reciprocal predicates can be
interpreted as semantically plural, and second, that NPs like less than three circles
can be interpreted as indefinite NDPs.

Before I go into details, ] want to point out that these two assumptions arc by no
ineans ad hoc. First, we have seen in Section 5 that we get a simple treatinent of
curulative readings by assuming that an NP like 600 Dutch firms is an indefinite
NP based on a predicate which applies to entities consisting of 600 Dutch firms. It
is a natural extension of this treatment to assuine that an NP like less than three
circles may apply to entities which are circles and which count less than three
circles (say, two circles). That this analysis is a plausible one, is also shown by the
fact that we can point to, say, a heap of apples and say: That’s less than twenty
apples. It can be argued that less than twenty apples is a predicate in this case
which applies to the object pointed to.

Second, it is well-known that the rule for reciprocals we assumed so far is too

strong, as natural-language reciprocals have ‘weaker’ interpretations (c{. Langen-
doen, 1979). Two natural examples are (60a,b):

(60) a. The ten children iook onc another by the hand.
b. The prisoners released each other.

For examnple, (60a) can be true if the children took one another by the hand in
pairs. We can get such weak interpretations of reciprocals if we assume that the
reciprocal predicate is taken as semantically plural. For example, if there are ten
children r,,... 75,4, ... ys such’that we have took_by_the_hand"(z; ® y;), then,
according to the rule for plural predicates and associativity of “@”, we also have
took by_the_hand™(z; & ... & ys).

These two assumptions accepted, we can get Barwise’s interpretation for de-
creasing quantifiers by assuming that we have an indefinite interpretation of the

quantifiers and a plural interpretation of the reciprocal predicate. If we interpret
less than three as

<3y = AP'AP3z{P(z) A P'(z) AN(z) < 3],
we get the following interpretation:

(61) Less than three circles and less than three stars are connected.
P P!

(MAX, (P, P',connected”)A
A <3pn(circle?)(P) A <3n(star?)(P')]

Thisis false in figures 1, 2 and 3, as it should be, according to the rule of Barwise.
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This maximalization can be rendered technically with the help of a family of
three-place relations MA X, of type (7)(7)(7)t. MAX, can be specified as follows:

(57) I o,a’, & are expressions of type 7, then MAX, (a, o', ") is true iff
— alao' C o
— for every 8,8 of type 7, if a € f and o C© f' and fU ' € ", then
B =aand 8 =d'.

With the help of this relation, we can give the followmg, more specific approxima-
tion for generalized conjunction:

(58) If a,a' are of type 7 = (0,)...(on)t, u, v’ and u" are varzables of type o

and us...u, are variables of type g5 ...0y, all not occurring free in a, o’
then

Au"Aug . dug e, u!
IMAX, (u,u’, u") A [a(u) U a'(u)](uz) ... (ua)l] €
CalUa'.

In the case of (53), we get the following interpretation with this new rule:

(59) Less than three circles and less than three stars are connected.
3P, P'[MAX. (P, P',connected”™) A <3(circle)(P) A <3(star)(P")]

This amounts to the claim that there are maximal sets P, P’ such that the elements
of P and the elements of P’ are all connected with each other, and that P contains
less than three circles and P’ contains less than three stars. This is false in
Figure 2 (as {b,¢,d} and {g, h,1} are the only possible instantiations for P and
P, and then we have e.g. ~< 3(circle)(P)), but true in Figure 1 (for example,
with {c} and {g, h,t} as two instantiations of P and P’).

However, this reconstruction still does not represent the truth conditions for
non-increasing branching quantifiers given by Barwise and van Benthem, as (59)
comes out as true in the following situation as well, and similarly ezactly one circle
and ezactly one star is connected (in these cases, {e} and {j} would be a proper
instantiation of P and P'):

a o x f
b o * g
d o * 1
e 0 —————ew ¥ ]

Figure 3
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sentence like DET circles and DET stars are connected we get a whole variety of
readings, depending on whether connected is interpreted as singular (connected”)
or plural (connected’), and wether the DET’s are interpreted as adjectival num-
ber words, as quantifiers, or as focusing operators. These factors may contribute

to the fact that the truth conditions of sentences with branching quantifiers are
notoriously hard to specify.

7. OUTLOOK

In this final section, 1 will discuss possible modifications of the join operation and
the relation between Boolean and non-Boolean conjunction.
An obvious generalization of the conjunction is to assume operations of arbi-

trary arity, instead of two-place operations. For example, we have a three-place
operation in the following case:

(64) The flag is red, white, and green.

Of course, as soon as we assume arbitrary arity for the basic operations @ and A,
we generate operations of arbitrary arity for the corresponding operations in other
types as well.

If we assume associativity of the basic operations “@” and “A”, the extension
to arbitrary arity is straightforward. However, it is not clear whether we really
should think of “®” as being associative (cf. Link, 1984b, Landman, 1988, Hoek-

sema, 1988, Lonning, 1989). Some relevant examples (the brackets are intended
to represent the relevant readings):

(65) a. Napoleon and (Wellington and Blicher) fought against each other.
b. *((Mary and John) and (Lisa and Stefan)) and ((Ann and Bill) and

(Steffi and Boris)) played against each other in the mized-double
semi-finals.

The intended bracketing can be indicated by the intonational structure; roughly,
bracket in the sentence corresponds to an optional pause. However, it is unclear
whethier we should posit bracketings of more than one level; Lonning (1989), who
proposed example (65b) as a case of two levels, is not sure about its status. But this
restriction may well be a performance restriction, especially due to the marginal
possibilities of marking the brackets.

I will not go into the solutions proposed for non-associativity here, but simply

want to point out that we have to assume it for non-Boolean conjunction of other
types as well. Some examples:

(66) a. The French and (the English and the Prussian) soldiers fought against
each other.

b. The (red and white) and (yellow and green) flags were put together.
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Note that we can use a similar representation for increasing quantifiers, like
more than three circles and more than three stars are connecied. Ii we interpret
NPs like more than three circles as

AP'AP3z[P(z) A P'(z) AN(z) > 3],

and connected as a plural reciprocal predicate, then this example would come out
true with respect to figures 1 and 3, and false with respect to Figure 2.

However, these analyses still do not cover van Benthem’s interpretaticn for ‘ex-
act’ quantifiers. If we interpret ezactly four circles as

AP'AP3z[P(z) A P'(z) AN(z) = 4],

then a sentence like ezactly four circles end ezactly four stars are connected would
come out true in figures 1 and 3. Van Benthem’s rule, on the other liand, requires
that there is a connection between every element in {4, ¢,d, e} and every clement
in {g,h,i,k}, so that it cannot be true these cases.

We can get van Benthem’s interpretation as well, if we assume that be connected
is interpreted in the strict sense, as a non-plural predicate connected”, and that
ezactly is treated as a focusing operator in the sense of Jacobs (1983) and Rooth
(1983). These operators have to be analyzed in some form of alternative semantics
(see von Stechow, 1988, for an overview). Complications and variations aside, the
focusing operator ezactly can be analyzed as expressing the fact that the item in
its focus is the only item of a range of alternatives for which the sentence is true
and is maximally informative. For example, a sentence like

(62) John has ezactly three children.

expresses the fact that 3 is the most informative value of n for which the sentence
pattern John has n children is true. In the case of

(63) Ezactly three circles and ezactly three stars are connected.

I assume that the first occurrence of ezactly focuses on the first occurrence of three,
and the second occurrence of ezactly focuses on the second occurrence of three.
So what (63) says is that n = 3 and m = 3 arc the maximally informative values
for which the sentence pattern n circles and m stars are connecied is true. When

we interpreted connected strictly, that is, as connected”, then this is true only if
P P in

MAX.(P, P',connected”) A = m(circle)(P) A = n(star)(P)

are unique, that is, there is only one maximal partition of connected” into P, P'.
If P, P' are not unique, then n and m could not be maximally informative. Thus
we get van Benthermn’s truth conditions.

To conclude this section, I wish to emphasize that sentences with branching
quantifiers, as outlined here, are not treated as a uniforin phenomenon. With a
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b. green and white {type et]
Az3z,z'[z" = z Uz’ A green(z) A white(z')]

In (68a), we get Boolean conjunction if we assume z = z’. We can assume that
this is the default case for the interpretation of z and z'. In (68b), this default
iuterpretation cannot be carried thirough, because green and white are contra-
dictory. Therefore we have to assume that z # z', and arrive at non-Boolean
conjunction.

Thus, Boolean conjunction ends up as a particularly simple case of non-Boolean
conjunction.

NOTE

* I had the chance to discuss the ideas developed here with several colleagues —
including Barbara Partee during a stay in Amherst in May 1988, Godehard Link,

Scbastian Lobner and Jeff Pelletier at a workshop in Tiibingen in June 1989, Fritz
Hamnm, and Zuzana Dobes. Thanks to them all.
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Therefore we have to assume that the non-associativity of non-Boolean conjunction
for entities has to be passed to the non-Boolean conjunction for expresssions of
other types.

Furtherinore, it might be the case that non-Boolean conjunction is not symmet-
ric (cf. Link, 1984):

.

(67) a. John and Mary are husband and wife.
b. John and Mary are 28 and 81 years old (respectively).
c. The flag 1s red and white.

In these examples, we cannot switch the order of the conjoined elements salva
veritate. In (67a,b), which have two conjunctions each, the order of the conjuncts
have to match (this is well-known for the respectively-construction, which has been
cited as a case where natural language is not context-free). (67c) evokes some
spatial order, either from top to bottom or from left to right. This is similar to
natural uses of Boolean conjunctions, which, in the case of non-stative sentences,
evoke a temporal order (cf. Mary married John and got pregnant vs. Alary got
pregnant and married John).

Again, I will not go into the solutions which can be proposed for the non-
symmetry of conjunction. One attractive possibility is, I think, to assume that
conjunction is basically symmetric, but subject to other semantic modules for
which the order of utterances is decisive. One could think of different levels. of
semantic representations which interact with each other, similar to the assumph‘on
of different tiers in phonology. What is important here is that any solution which
is proposed for non-Boolean conjunctions of entities should be generalized for non-
Boolean conjunction of expressions of other types.

Another point which should be stressed here is that the generalization of con-
junction developed in this article offers a uniform notion of a conjucticn which
captures both the Boolean and non-Boolean variety. We have seen that Boolea.n
conjunction is basically an operation on type {, and non-Boolean conjupction is
an operation on type e. However, to derive an interesting generalization for non-
Boolean conjunction we had to make use of Boolean conjunction as well. In partic-
ular, the notion of conjoinable types for Boolean conjunction and for non-Boolean
conjunction coincide, if we exclude the basic types. This suggests that Boolean
and non-Boolean conjunctions can be traced back to one uniforin notion of con-
junction. This also would explain why languages typically use one wotd, as for
example English and, for both types.

Indeed, with (31) we already have proposed such a uniform and gener'alized
notion of conjunction, as this definition applies to general Boolean conjunction as
well. To sce this, look at the following examples:

(68) a. new and expensive [type et]
Az"3z,2'[z" = z Uz’ A new(z) A expensive(z')]
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